{"title":"Ag2CdP2S6二维半导体光催化剂:首创太阳能水分解高效绿色制氢技术","authors":"A. Chafai","doi":"10.1016/j.nxmate.2025.100933","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating global pollution crisis, largely driven by fossil fuel consumption in industrial sectors responsible for approximately 75% of global greenhouse gas emissions, underscores the urgent need for sustainable clean energy solutions to achieve decarbonization targets. This study explores the potential of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub>, a novel two-dimensional (2D) semiconductor, as an effective photocatalyst for green hydrogen production through solar water splitting. Using density functional theory (DFT) calculations, we confirm the material’s dynamic and thermal stability via phonon analysis and ab initio molecular dynamics (AIMD) simulations. Band structure analyses reveal a semiconducting nature with a direct band gap of approximately <span><math><mrow><mn>1</mn><mo>.</mo><mn>95</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>3</mn><mo>.</mo><mn>15</mn><mspace></mspace><mi>eV</mi></mrow></math></span> at DFT-PBE and DFT-HSE06 levels, respectively. Notably, absorption coefficient analysis demonstrates significant peaks in the ultraviolet region <span><math><mrow><mo>(</mo><mn>149620</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>8</mn><mo>.</mo><mn>57</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span> alongside considerable visible light absorption <span><math><mrow><mo>(</mo><mn>11564</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>3</mn><mo>.</mo><mn>26</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span>. The conduction band minimum (CBM) is calculated at <span><math><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>69</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, and the valence band maximum (VBM) at <span><math><mrow><mo>−</mo><mn>6</mn><mo>.</mo><mn>84</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, satisfying the criteria for effective hydrogen evolution reaction (HER). Under acidic conditions, optimal HER kinetics are observed at phosphorus (P) atom sites with a near-ideal Gibbs free energy change (<span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>) of approximately <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>02</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. Meanwhile, tilted sulfur (S) sites exhibit superior water splitting efficiency at neutral (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>7</mn></mrow></math></span>) and slightly alkaline conditions (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>3</mn></mrow></math></span>), with <span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> values of <span><math><mrow><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>.</mo><mn>51</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, respectively. These findings highlight the versatility and efficiency of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub> as photocatalyst across diverse pH conditions, characterized by enhanced charge transfer properties, thereby contributing to the advancement of renewable hydrogen production technologies.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100933"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag2CdP2S6 2D semiconductor photocatalyst: Pioneering efficient green hydrogen production through solar water splitting\",\"authors\":\"A. Chafai\",\"doi\":\"10.1016/j.nxmate.2025.100933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The escalating global pollution crisis, largely driven by fossil fuel consumption in industrial sectors responsible for approximately 75% of global greenhouse gas emissions, underscores the urgent need for sustainable clean energy solutions to achieve decarbonization targets. This study explores the potential of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub>, a novel two-dimensional (2D) semiconductor, as an effective photocatalyst for green hydrogen production through solar water splitting. Using density functional theory (DFT) calculations, we confirm the material’s dynamic and thermal stability via phonon analysis and ab initio molecular dynamics (AIMD) simulations. Band structure analyses reveal a semiconducting nature with a direct band gap of approximately <span><math><mrow><mn>1</mn><mo>.</mo><mn>95</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>3</mn><mo>.</mo><mn>15</mn><mspace></mspace><mi>eV</mi></mrow></math></span> at DFT-PBE and DFT-HSE06 levels, respectively. Notably, absorption coefficient analysis demonstrates significant peaks in the ultraviolet region <span><math><mrow><mo>(</mo><mn>149620</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>8</mn><mo>.</mo><mn>57</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span> alongside considerable visible light absorption <span><math><mrow><mo>(</mo><mn>11564</mn><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mn>3</mn><mo>.</mo><mn>26</mn><mspace></mspace><mi>eV</mi><mo>)</mo></mrow></math></span>. The conduction band minimum (CBM) is calculated at <span><math><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>69</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, and the valence band maximum (VBM) at <span><math><mrow><mo>−</mo><mn>6</mn><mo>.</mo><mn>84</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, satisfying the criteria for effective hydrogen evolution reaction (HER). Under acidic conditions, optimal HER kinetics are observed at phosphorus (P) atom sites with a near-ideal Gibbs free energy change (<span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span>) of approximately <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>02</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. Meanwhile, tilted sulfur (S) sites exhibit superior water splitting efficiency at neutral (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>7</mn></mrow></math></span>) and slightly alkaline conditions (<span><math><mrow><mi>p</mi><mi>H</mi><mo>=</mo><mn>8</mn><mo>.</mo><mn>3</mn></mrow></math></span>), with <span><math><mrow><mi>Δ</mi><msubsup><mrow><mi>G</mi></mrow><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> values of <span><math><mrow><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>.</mo><mn>51</mn><mspace></mspace><mi>eV</mi></mrow></math></span>, respectively. These findings highlight the versatility and efficiency of Ag<sub>2</sub>CdP<sub>2</sub>S<sub>6</sub> as photocatalyst across diverse pH conditions, characterized by enhanced charge transfer properties, thereby contributing to the advancement of renewable hydrogen production technologies.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"9 \",\"pages\":\"Article 100933\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825004514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ag2CdP2S6 2D semiconductor photocatalyst: Pioneering efficient green hydrogen production through solar water splitting
The escalating global pollution crisis, largely driven by fossil fuel consumption in industrial sectors responsible for approximately 75% of global greenhouse gas emissions, underscores the urgent need for sustainable clean energy solutions to achieve decarbonization targets. This study explores the potential of Ag2CdP2S6, a novel two-dimensional (2D) semiconductor, as an effective photocatalyst for green hydrogen production through solar water splitting. Using density functional theory (DFT) calculations, we confirm the material’s dynamic and thermal stability via phonon analysis and ab initio molecular dynamics (AIMD) simulations. Band structure analyses reveal a semiconducting nature with a direct band gap of approximately and at DFT-PBE and DFT-HSE06 levels, respectively. Notably, absorption coefficient analysis demonstrates significant peaks in the ultraviolet region alongside considerable visible light absorption . The conduction band minimum (CBM) is calculated at , and the valence band maximum (VBM) at , satisfying the criteria for effective hydrogen evolution reaction (HER). Under acidic conditions, optimal HER kinetics are observed at phosphorus (P) atom sites with a near-ideal Gibbs free energy change () of approximately . Meanwhile, tilted sulfur (S) sites exhibit superior water splitting efficiency at neutral () and slightly alkaline conditions (), with values of and , respectively. These findings highlight the versatility and efficiency of Ag2CdP2S6 as photocatalyst across diverse pH conditions, characterized by enhanced charge transfer properties, thereby contributing to the advancement of renewable hydrogen production technologies.