关键多项式的拓扑方法

IF 0.8 2区 数学 Q2 MATHEMATICS
Enric Nart , Josnei Novacoski , Giulio Peruginelli
{"title":"关键多项式的拓扑方法","authors":"Enric Nart ,&nbsp;Josnei Novacoski ,&nbsp;Giulio Peruginelli","doi":"10.1016/j.jalgebra.2025.06.046","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we present characterizations of the sets of key polynomials and abstract key polynomials for a valuation <em>μ</em> of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, in terms of (ultrametric) balls in the algebraic closure <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span> of <em>K</em> with respect to <em>v</em>, a fixed extension of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mo>|</mo><mi>K</mi></mrow></msub></math></span> to <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span>. In particular, we show that the ways of augmenting <em>μ</em>, in the sense of Mac Lane, are in one-to-one correspondence with the partition of a fixed closed ball <span><math><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> associated to <em>μ</em> into the disjoint union of open balls <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>, modulo the action of the decomposition group of <em>v</em>. We also present a similar characterization for the set of limit key polynomials for an increasing family of valuations of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 280-307"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A topological approach to key polynomials\",\"authors\":\"Enric Nart ,&nbsp;Josnei Novacoski ,&nbsp;Giulio Peruginelli\",\"doi\":\"10.1016/j.jalgebra.2025.06.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we present characterizations of the sets of key polynomials and abstract key polynomials for a valuation <em>μ</em> of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, in terms of (ultrametric) balls in the algebraic closure <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span> of <em>K</em> with respect to <em>v</em>, a fixed extension of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mo>|</mo><mi>K</mi></mrow></msub></math></span> to <span><math><mover><mrow><mi>K</mi></mrow><mo>‾</mo></mover></math></span>. In particular, we show that the ways of augmenting <em>μ</em>, in the sense of Mac Lane, are in one-to-one correspondence with the partition of a fixed closed ball <span><math><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span> associated to <em>μ</em> into the disjoint union of open balls <span><math><msup><mrow><mi>B</mi></mrow><mrow><mo>∘</mo></mrow></msup><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>, modulo the action of the decomposition group of <em>v</em>. We also present a similar characterization for the set of limit key polynomials for an increasing family of valuations of <span><math><mi>K</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"684 \",\"pages\":\"Pages 280-307\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004132\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了对K(x)的值μ的关键多项式集和抽象关键多项式集的刻画,在关于v的代数闭包K的K的K中,μ|K到K的一个固定扩展。特别地,我们证明了在Mac Lane的意义上,增大μ的方法与将与μ相关的一个固定闭球B(a,δ)分割为若干开球B°(ai,δ)的不相交并,模于v的分解群的作用是一一对应的。我们还对K(x)的一个递增的赋值族的极限键多项式集给出了类似的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A topological approach to key polynomials
In this paper we present characterizations of the sets of key polynomials and abstract key polynomials for a valuation μ of K(x), in terms of (ultrametric) balls in the algebraic closure K of K with respect to v, a fixed extension of μ|K to K. In particular, we show that the ways of augmenting μ, in the sense of Mac Lane, are in one-to-one correspondence with the partition of a fixed closed ball B(a,δ) associated to μ into the disjoint union of open balls B(ai,δ), modulo the action of the decomposition group of v. We also present a similar characterization for the set of limit key polynomials for an increasing family of valuations of K(x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信