基于深度学习的胸部HRCT三维内容图像检索系统:对间质性肺疾病和常见性间质性肺炎的性能评价

IF 2.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Akira Oosawa , Atsuko Kurosaki , Atsushi Miyamoto , Shigeo Hanada , Yuichiro Nei , Hiroshi Nakahama , Yui Takahashi , Takahiro Mitsumura , Hisashi Takaya , Tomohisa Baba , Tae Iwasawa , Masatoshi Hori , Shoji Kido , Takashi Ogura , Noriyuki Tomiyama , Kazuma Kishi , Meiyo Tamaoka
{"title":"基于深度学习的胸部HRCT三维内容图像检索系统:对间质性肺疾病和常见性间质性肺炎的性能评价","authors":"Akira Oosawa ,&nbsp;Atsuko Kurosaki ,&nbsp;Atsushi Miyamoto ,&nbsp;Shigeo Hanada ,&nbsp;Yuichiro Nei ,&nbsp;Hiroshi Nakahama ,&nbsp;Yui Takahashi ,&nbsp;Takahiro Mitsumura ,&nbsp;Hisashi Takaya ,&nbsp;Tomohisa Baba ,&nbsp;Tae Iwasawa ,&nbsp;Masatoshi Hori ,&nbsp;Shoji Kido ,&nbsp;Takashi Ogura ,&nbsp;Noriyuki Tomiyama ,&nbsp;Kazuma Kishi ,&nbsp;Meiyo Tamaoka","doi":"10.1016/j.ejro.2025.100670","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diffuse parenchymal lung diseases have various conditions and CT imaging findings. Differentiating interstitial lung diseases (ILDs) and determining the presence or absence of usual interstitial pneumonia (UIP), can be challenging, even for experienced radiologists. To address this challenge, we developed a 3D-content-based image retrieval system (CBIR) and investigated its clinical usefulness.</div></div><div><h3>Methods</h3><div>Using deep learning technology, we developed a prototype system that analyzes thin-slice whole lung HRCT images, automatically registers them in a database, and retrieves similar images. To evaluate search performance, we used a database of 2058 cases and assessed image similarity between query and retrieved cases using a 5-point visual score (5: Similar, 4: Somewhat similar, 3: Neither, 2: Somewhat dissimilar, 1: Dissimilar). To assess clinical usefulness, we evaluated the concordance of labels (ILD/non-ILD, with/without UIP) between query and retrieved cases, using a database of 301 cases across 57 diseases.</div></div><div><h3>Results</h3><div>For search performance, the mean score of visual similarity between 70 queries and their top 5 retrieved cases was 4.37 ± 0.83. For clinical usefulness, label concordance between 25 queries and their top 5 retrieved cases was assessed across 4 labels. For ILD, the mean concordance of labels was 0.94 ± 0.15, while for non-ILD, it was 0.64 ± 0.31. For cases with UIP, the mean concordance of labels was 0.86 ± 0.17, while for cases without UIP, it was 0.83 ± 0.24.</div></div><div><h3>Conclusions</h3><div>Our CBIR system showed high accuracy for identifying cases with/without UIP, suggesting its potential to support UIP differentiation in clinical practice.</div></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"15 ","pages":"Article 100670"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based 3D content-based image retrieval system on chest HRCT: Performance assessment for interstitial lung diseases and usual interstitial pneumonia\",\"authors\":\"Akira Oosawa ,&nbsp;Atsuko Kurosaki ,&nbsp;Atsushi Miyamoto ,&nbsp;Shigeo Hanada ,&nbsp;Yuichiro Nei ,&nbsp;Hiroshi Nakahama ,&nbsp;Yui Takahashi ,&nbsp;Takahiro Mitsumura ,&nbsp;Hisashi Takaya ,&nbsp;Tomohisa Baba ,&nbsp;Tae Iwasawa ,&nbsp;Masatoshi Hori ,&nbsp;Shoji Kido ,&nbsp;Takashi Ogura ,&nbsp;Noriyuki Tomiyama ,&nbsp;Kazuma Kishi ,&nbsp;Meiyo Tamaoka\",\"doi\":\"10.1016/j.ejro.2025.100670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Diffuse parenchymal lung diseases have various conditions and CT imaging findings. Differentiating interstitial lung diseases (ILDs) and determining the presence or absence of usual interstitial pneumonia (UIP), can be challenging, even for experienced radiologists. To address this challenge, we developed a 3D-content-based image retrieval system (CBIR) and investigated its clinical usefulness.</div></div><div><h3>Methods</h3><div>Using deep learning technology, we developed a prototype system that analyzes thin-slice whole lung HRCT images, automatically registers them in a database, and retrieves similar images. To evaluate search performance, we used a database of 2058 cases and assessed image similarity between query and retrieved cases using a 5-point visual score (5: Similar, 4: Somewhat similar, 3: Neither, 2: Somewhat dissimilar, 1: Dissimilar). To assess clinical usefulness, we evaluated the concordance of labels (ILD/non-ILD, with/without UIP) between query and retrieved cases, using a database of 301 cases across 57 diseases.</div></div><div><h3>Results</h3><div>For search performance, the mean score of visual similarity between 70 queries and their top 5 retrieved cases was 4.37 ± 0.83. For clinical usefulness, label concordance between 25 queries and their top 5 retrieved cases was assessed across 4 labels. For ILD, the mean concordance of labels was 0.94 ± 0.15, while for non-ILD, it was 0.64 ± 0.31. For cases with UIP, the mean concordance of labels was 0.86 ± 0.17, while for cases without UIP, it was 0.83 ± 0.24.</div></div><div><h3>Conclusions</h3><div>Our CBIR system showed high accuracy for identifying cases with/without UIP, suggesting its potential to support UIP differentiation in clinical practice.</div></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"15 \",\"pages\":\"Article 100670\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047725000371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047725000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景弥漫性肺实质疾病有多种症状和CT影像表现。鉴别间质性肺疾病(ild)和确定是否存在通常的间质性肺炎(UIP),可能是具有挑战性的,即使是经验丰富的放射科医生。为了解决这一挑战,我们开发了一个基于3d内容的图像检索系统(CBIR)并研究了其临床用途。方法利用深度学习技术,开发了一个原型系统,对全肺HRCT薄层图像进行分析,自动注册到数据库中,并检索相似图像。为了评估搜索性能,我们使用了一个包含2058个案例的数据库,并使用5分视觉评分来评估查询和检索案例之间的图像相似性(5分相似,4分有点相似,3分都不相似,2分有点不相似,1分不相似)。为了评估临床有用性,我们使用涵盖57种疾病的301例数据库,评估了查询和检索病例之间标签(ILD/非ILD,有/没有UIP)的一致性。结果在搜索性能方面,70个查询与前5个检索案例的视觉相似度平均得分为4.37 ± 0.83。对于临床有用性,在4个标签上评估25个查询和前5个检索病例之间的标签一致性。对于ILD,标签的平均一致性为0.94 ± 0.15,而对于非ILD,其平均一致性为0.64 ± 0.31。对于有UIP的病例,标签的平均一致性为0.86 ± 0.17,而对于没有UIP的病例,标签的平均一致性为0.83 ± 0.24。结论我们的CBIR系统对UIP有较高的识别准确率,可用于临床UIP的鉴别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning-based 3D content-based image retrieval system on chest HRCT: Performance assessment for interstitial lung diseases and usual interstitial pneumonia

Background

Diffuse parenchymal lung diseases have various conditions and CT imaging findings. Differentiating interstitial lung diseases (ILDs) and determining the presence or absence of usual interstitial pneumonia (UIP), can be challenging, even for experienced radiologists. To address this challenge, we developed a 3D-content-based image retrieval system (CBIR) and investigated its clinical usefulness.

Methods

Using deep learning technology, we developed a prototype system that analyzes thin-slice whole lung HRCT images, automatically registers them in a database, and retrieves similar images. To evaluate search performance, we used a database of 2058 cases and assessed image similarity between query and retrieved cases using a 5-point visual score (5: Similar, 4: Somewhat similar, 3: Neither, 2: Somewhat dissimilar, 1: Dissimilar). To assess clinical usefulness, we evaluated the concordance of labels (ILD/non-ILD, with/without UIP) between query and retrieved cases, using a database of 301 cases across 57 diseases.

Results

For search performance, the mean score of visual similarity between 70 queries and their top 5 retrieved cases was 4.37 ± 0.83. For clinical usefulness, label concordance between 25 queries and their top 5 retrieved cases was assessed across 4 labels. For ILD, the mean concordance of labels was 0.94 ± 0.15, while for non-ILD, it was 0.64 ± 0.31. For cases with UIP, the mean concordance of labels was 0.86 ± 0.17, while for cases without UIP, it was 0.83 ± 0.24.

Conclusions

Our CBIR system showed high accuracy for identifying cases with/without UIP, suggesting its potential to support UIP differentiation in clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信