锰掺杂非晶核壳型硫化钴增强光催化析氢

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yaohan Kong , Kaiyi Zhang , Mei Gu , Yifan Zhang , Jianfeng Huang , Faliang Luo , Yongqiang Feng
{"title":"锰掺杂非晶核壳型硫化钴增强光催化析氢","authors":"Yaohan Kong ,&nbsp;Kaiyi Zhang ,&nbsp;Mei Gu ,&nbsp;Yifan Zhang ,&nbsp;Jianfeng Huang ,&nbsp;Faliang Luo ,&nbsp;Yongqiang Feng","doi":"10.1016/j.ijhydene.2025.150621","DOIUrl":null,"url":null,"abstract":"<div><div>Rational modulation of co-catalyst properties through strategic metal doping and structural engineering emerges a promising approach to simultaneously tackle critical challenges in photocatalytic hydrogen evolution—specifically, suppressing photogenerated carrier recombination and optimizing hydrogen adsorption thermodynamics. This work demonstrates the synergistic integration of manganese doping and amorphous core-shell architecture in a bimetallic sulfide co-catalyst (Mn-CoS<sub>x</sub>), designed to overcome the inherent limitations of conventional crystalline CoS systems. The developed Mn-CoS<sub>x</sub> features a homogeneous nanostructure with an enlarged specific surface area (SSA ≈ 112.46 m<sup>2</sup> g<sup>−1</sup>) and abundant exposed sulfur active sites, while Mn incorporation effectively reduces the hydrogen adsorption free energy (ΔG<sub>H∗</sub> = −0.51 eV) through d-band electronic structure modulation. When coupled with CdS photocatalysts, the optimized Mn-CoS<sub>x</sub>/CdS composite achieves exceptional hydrogen evolution rates of 19.1 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, representing 9-fold enhancement over benchmark CoS/CdS, 112-fold over bare CdS, and 21-fold over Pt/CdS systems, respectively. Notably, the amorphous core-shell configuration not only facilitates efficient charge separation but also enables dynamic surface reconstruction during catalytic operation. This work establishes a universal design principle for transition metal-based co-catalysts through the synergistic combination of atomic-level doping strategies and nanoscale structural engineering, providing new insights into the development of cost-effective, noble metal-free photocatalytic systems for sustainable energy conversion.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"160 ","pages":"Article 150621"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese-doped amorphous core-shell cobaltous sulfide for enhanced photocatalytic hydrogen evolution\",\"authors\":\"Yaohan Kong ,&nbsp;Kaiyi Zhang ,&nbsp;Mei Gu ,&nbsp;Yifan Zhang ,&nbsp;Jianfeng Huang ,&nbsp;Faliang Luo ,&nbsp;Yongqiang Feng\",\"doi\":\"10.1016/j.ijhydene.2025.150621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational modulation of co-catalyst properties through strategic metal doping and structural engineering emerges a promising approach to simultaneously tackle critical challenges in photocatalytic hydrogen evolution—specifically, suppressing photogenerated carrier recombination and optimizing hydrogen adsorption thermodynamics. This work demonstrates the synergistic integration of manganese doping and amorphous core-shell architecture in a bimetallic sulfide co-catalyst (Mn-CoS<sub>x</sub>), designed to overcome the inherent limitations of conventional crystalline CoS systems. The developed Mn-CoS<sub>x</sub> features a homogeneous nanostructure with an enlarged specific surface area (SSA ≈ 112.46 m<sup>2</sup> g<sup>−1</sup>) and abundant exposed sulfur active sites, while Mn incorporation effectively reduces the hydrogen adsorption free energy (ΔG<sub>H∗</sub> = −0.51 eV) through d-band electronic structure modulation. When coupled with CdS photocatalysts, the optimized Mn-CoS<sub>x</sub>/CdS composite achieves exceptional hydrogen evolution rates of 19.1 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light irradiation, representing 9-fold enhancement over benchmark CoS/CdS, 112-fold over bare CdS, and 21-fold over Pt/CdS systems, respectively. Notably, the amorphous core-shell configuration not only facilitates efficient charge separation but also enables dynamic surface reconstruction during catalytic operation. This work establishes a universal design principle for transition metal-based co-catalysts through the synergistic combination of atomic-level doping strategies and nanoscale structural engineering, providing new insights into the development of cost-effective, noble metal-free photocatalytic systems for sustainable energy conversion.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"160 \",\"pages\":\"Article 150621\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925036201\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925036201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过战略性金属掺杂和结构工程来合理调节共催化剂的性质,是同时解决光催化制氢关键挑战的一种有希望的方法,特别是抑制光生载流子重组和优化氢吸附热力学。这项工作证明了锰掺杂和非晶核壳结构在双金属硫化物共催化剂(Mn-CoSx)中的协同集成,旨在克服传统晶体CoS系统的固有局限性。制备的Mn- cosx具有均匀的纳米结构,具有较大的比表面积(SSA≈112.46 m2 g−1)和丰富的暴露硫活性位点,Mn的掺入通过d波段电子结构调制有效地降低了氢吸附自由能(ΔGH∗=−0.51 eV)。当与CdS光催化剂耦合时,优化后的Mn-CoSx/CdS复合材料在可见光照射下的析氢速率达到19.1 mmol g−1 h−1,分别比基准CoS/CdS提高9倍,比裸CdS提高112倍,比Pt/CdS提高21倍。值得注意的是,无定形核壳结构不仅有利于有效的电荷分离,而且在催化操作过程中实现了动态表面重构。本工作通过原子级掺杂策略和纳米级结构工程的协同结合,建立了过渡金属基共催化剂的通用设计原则,为开发具有成本效益的、无贵金属的可持续能量转换光催化系统提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Manganese-doped amorphous core-shell cobaltous sulfide for enhanced photocatalytic hydrogen evolution

Manganese-doped amorphous core-shell cobaltous sulfide for enhanced photocatalytic hydrogen evolution
Rational modulation of co-catalyst properties through strategic metal doping and structural engineering emerges a promising approach to simultaneously tackle critical challenges in photocatalytic hydrogen evolution—specifically, suppressing photogenerated carrier recombination and optimizing hydrogen adsorption thermodynamics. This work demonstrates the synergistic integration of manganese doping and amorphous core-shell architecture in a bimetallic sulfide co-catalyst (Mn-CoSx), designed to overcome the inherent limitations of conventional crystalline CoS systems. The developed Mn-CoSx features a homogeneous nanostructure with an enlarged specific surface area (SSA ≈ 112.46 m2 g−1) and abundant exposed sulfur active sites, while Mn incorporation effectively reduces the hydrogen adsorption free energy (ΔGH∗ = −0.51 eV) through d-band electronic structure modulation. When coupled with CdS photocatalysts, the optimized Mn-CoSx/CdS composite achieves exceptional hydrogen evolution rates of 19.1 mmol g−1 h−1 under visible light irradiation, representing 9-fold enhancement over benchmark CoS/CdS, 112-fold over bare CdS, and 21-fold over Pt/CdS systems, respectively. Notably, the amorphous core-shell configuration not only facilitates efficient charge separation but also enables dynamic surface reconstruction during catalytic operation. This work establishes a universal design principle for transition metal-based co-catalysts through the synergistic combination of atomic-level doping strategies and nanoscale structural engineering, providing new insights into the development of cost-effective, noble metal-free photocatalytic systems for sustainable energy conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信