Jia Guo , Yaqi Tao , Zhen Du , Siqi Zhang , Wei Zheng , Zhibo Wang , Zhuomin Yi , Yangqing Gou , Wen Tang
{"title":"刺激反应抗菌聚合物系统:从结构设计到生物医学应用","authors":"Jia Guo , Yaqi Tao , Zhen Du , Siqi Zhang , Wei Zheng , Zhibo Wang , Zhuomin Yi , Yangqing Gou , Wen Tang","doi":"10.1016/j.giant.2025.100366","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial infections and drug-resistant evolution have seriously threatened public health. Stimuli-responsive antimicrobial materials have been rapidly developed to address the evolving challenges posed by multi-drug-resistant bacteria. Among various materials, polymer-based stimuli-responsive systems stand out thanks to their structural design flexibility, functional diversity, decreased systemic toxicity, and enhanced therapeutic effects compared with free drugs. In this review, we present the latest advances in stimuli-responsive antimicrobial polymer systems, summarizing their molecular structures and design principles across exogenous and endogenous stimulus types. Exogenous stimuli offer precise spatiotemporal control triggered by temperature, light, magnetic, salt, etc. Endogenous stimuli are in-situ biomarkers in the infection environment, such as pH, redox, bacterial secretions, etc. In the aim of developing antimicrobial material with high selectivity, we also summarize antimicrobial recognition strategies that enhance drug targeting efficiency. Finally, the challenges in current stimuli-responsive antimicrobial polymeric systems are discussed, opening up prospects for next-generation intelligent antimicrobial materials with enhanced efficacy, biosafety and pathogen-targeting precision.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"24 ","pages":"Article 100366"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimuli-responsive antimicrobial polymer systems: From structural design to biomedical applications\",\"authors\":\"Jia Guo , Yaqi Tao , Zhen Du , Siqi Zhang , Wei Zheng , Zhibo Wang , Zhuomin Yi , Yangqing Gou , Wen Tang\",\"doi\":\"10.1016/j.giant.2025.100366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial infections and drug-resistant evolution have seriously threatened public health. Stimuli-responsive antimicrobial materials have been rapidly developed to address the evolving challenges posed by multi-drug-resistant bacteria. Among various materials, polymer-based stimuli-responsive systems stand out thanks to their structural design flexibility, functional diversity, decreased systemic toxicity, and enhanced therapeutic effects compared with free drugs. In this review, we present the latest advances in stimuli-responsive antimicrobial polymer systems, summarizing their molecular structures and design principles across exogenous and endogenous stimulus types. Exogenous stimuli offer precise spatiotemporal control triggered by temperature, light, magnetic, salt, etc. Endogenous stimuli are in-situ biomarkers in the infection environment, such as pH, redox, bacterial secretions, etc. In the aim of developing antimicrobial material with high selectivity, we also summarize antimicrobial recognition strategies that enhance drug targeting efficiency. Finally, the challenges in current stimuli-responsive antimicrobial polymeric systems are discussed, opening up prospects for next-generation intelligent antimicrobial materials with enhanced efficacy, biosafety and pathogen-targeting precision.</div></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"24 \",\"pages\":\"Article 100366\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542525000153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542525000153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stimuli-responsive antimicrobial polymer systems: From structural design to biomedical applications
Bacterial infections and drug-resistant evolution have seriously threatened public health. Stimuli-responsive antimicrobial materials have been rapidly developed to address the evolving challenges posed by multi-drug-resistant bacteria. Among various materials, polymer-based stimuli-responsive systems stand out thanks to their structural design flexibility, functional diversity, decreased systemic toxicity, and enhanced therapeutic effects compared with free drugs. In this review, we present the latest advances in stimuli-responsive antimicrobial polymer systems, summarizing their molecular structures and design principles across exogenous and endogenous stimulus types. Exogenous stimuli offer precise spatiotemporal control triggered by temperature, light, magnetic, salt, etc. Endogenous stimuli are in-situ biomarkers in the infection environment, such as pH, redox, bacterial secretions, etc. In the aim of developing antimicrobial material with high selectivity, we also summarize antimicrobial recognition strategies that enhance drug targeting efficiency. Finally, the challenges in current stimuli-responsive antimicrobial polymeric systems are discussed, opening up prospects for next-generation intelligent antimicrobial materials with enhanced efficacy, biosafety and pathogen-targeting precision.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.