{"title":"高斯-勒让德IRK积分中处理高频刚性问题的一种新的放大方法","authors":"Sanaz Hami Hassan Kiyadeh , Hosein Saadat , Ramin Goudarzi Karim , Ali Safaie , Fayyaz Khodadosti","doi":"10.1016/j.apnum.2025.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a new amplification methodology based on the widely used Gauss-Legendre implicit Runge-Kutta integrations by addressing the phase lag and amplification factor. The novel methodology focuses on these two elements, which are the complex amplifiers associated with the GLIRK integrations.</div><div>To enhance the amplifier capabilities of the GLIRK integrations, we introduce two novel equations that clarify the relationships between the amplification factor and phase lag. This paper culminates in the improvement of two well-defined GLIRK integrations, each carefully designed to eliminate both the phase lag and the amplification factor in practical applications. The examination of absolute stability regions in the complex plane, as well as stability regions in the <em>z</em>-<em>v</em> plane, is relevant to the new GLIRK integrations presented.</div><div>To satisfy the admissibility of the new methodology, we establish a competitive environment alongside the classical GLIRK integration.</div><div>This competitive space includes numerical examples that demonstrate the low cost of the new amplified GLIRK integrations in addressing stiff problems with high frequency. Ultimately, this cost-effectiveness and superiority become increasingly evident as the frequency of the stiff problems increases.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 43-57"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel amplifying methodology in Gauss-Legendre IRK integrations to cope with high-frequency stiff problems\",\"authors\":\"Sanaz Hami Hassan Kiyadeh , Hosein Saadat , Ramin Goudarzi Karim , Ali Safaie , Fayyaz Khodadosti\",\"doi\":\"10.1016/j.apnum.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a new amplification methodology based on the widely used Gauss-Legendre implicit Runge-Kutta integrations by addressing the phase lag and amplification factor. The novel methodology focuses on these two elements, which are the complex amplifiers associated with the GLIRK integrations.</div><div>To enhance the amplifier capabilities of the GLIRK integrations, we introduce two novel equations that clarify the relationships between the amplification factor and phase lag. This paper culminates in the improvement of two well-defined GLIRK integrations, each carefully designed to eliminate both the phase lag and the amplification factor in practical applications. The examination of absolute stability regions in the complex plane, as well as stability regions in the <em>z</em>-<em>v</em> plane, is relevant to the new GLIRK integrations presented.</div><div>To satisfy the admissibility of the new methodology, we establish a competitive environment alongside the classical GLIRK integration.</div><div>This competitive space includes numerical examples that demonstrate the low cost of the new amplified GLIRK integrations in addressing stiff problems with high frequency. Ultimately, this cost-effectiveness and superiority become increasingly evident as the frequency of the stiff problems increases.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"218 \",\"pages\":\"Pages 43-57\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001473\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A novel amplifying methodology in Gauss-Legendre IRK integrations to cope with high-frequency stiff problems
This work presents a new amplification methodology based on the widely used Gauss-Legendre implicit Runge-Kutta integrations by addressing the phase lag and amplification factor. The novel methodology focuses on these two elements, which are the complex amplifiers associated with the GLIRK integrations.
To enhance the amplifier capabilities of the GLIRK integrations, we introduce two novel equations that clarify the relationships between the amplification factor and phase lag. This paper culminates in the improvement of two well-defined GLIRK integrations, each carefully designed to eliminate both the phase lag and the amplification factor in practical applications. The examination of absolute stability regions in the complex plane, as well as stability regions in the z-v plane, is relevant to the new GLIRK integrations presented.
To satisfy the admissibility of the new methodology, we establish a competitive environment alongside the classical GLIRK integration.
This competitive space includes numerical examples that demonstrate the low cost of the new amplified GLIRK integrations in addressing stiff problems with high frequency. Ultimately, this cost-effectiveness and superiority become increasingly evident as the frequency of the stiff problems increases.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.