设计抗金黄色葡萄球菌的电活性细菌纤维素-碳纳米管复合膜

IF 4.9 Q1 MICROBIOLOGY
Daniel S. Levin , Camila S. Cué Royo , Denis Johnson , Soumalya Ghosh , Sricharani Rao Balmuri , Huda Usman , Shakira M. Martínez Vásquez , David Kumar Yesudoss , Abdoulaye Djire , Mostafa Bedewy , Tagbo H.R. Niepa
{"title":"设计抗金黄色葡萄球菌的电活性细菌纤维素-碳纳米管复合膜","authors":"Daniel S. Levin ,&nbsp;Camila S. Cué Royo ,&nbsp;Denis Johnson ,&nbsp;Soumalya Ghosh ,&nbsp;Sricharani Rao Balmuri ,&nbsp;Huda Usman ,&nbsp;Shakira M. Martínez Vásquez ,&nbsp;David Kumar Yesudoss ,&nbsp;Abdoulaye Djire ,&nbsp;Mostafa Bedewy ,&nbsp;Tagbo H.R. Niepa","doi":"10.1016/j.bioflm.2025.100305","DOIUrl":null,"url":null,"abstract":"<div><div><em>Staphylococcus aureus</em> is the leading cause of skin infections in the U.S., and its rapid evolution and resistance to antibiotics create a barrier to effective treatment. In this study, we engineered a composite membrane with bacterial cellulose and carbon nanotubes (BC-CNT) as an electroactive dressing to rapidly eradicate vancomycin-intermediate <em>S. aureus</em>. Nonpathogenic <em>Komagataeibacter sucrofermentans</em> produced the BC membrane at an air-liquid interface. Then, carboxyl-functionalized multi-walled CNTs were integrated into decellularized BC to create stable and electrically conductive BC-CNT dressings. The electric potential and ionic flux across BC-CNT were modeled and standardized via chronoamperometry for experimental validation. We found that treatment with electroactive BC-CNT increases <em>S. aureus</em> sensitivity to vancomycin and prevents macro-scale biofilm formation. The bactericidal efficacy of the composite membrane is consistent with electrochemical stress caused by voltage mediated with BC-CNT. After a single hour of combinatorial electrical and drug treatment, biofilm-forming capacity was inhibited by nearly 92 %. These results advance applications of electrochemistry in medicine and create a new direction to overcome <em>S. aureus</em> infections on skin and soft tissues.</div></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":"10 ","pages":"Article 100305"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering an electroactive bacterial cellulose-carbon nanotube composite membrane against Staphylococcus aureus\",\"authors\":\"Daniel S. Levin ,&nbsp;Camila S. Cué Royo ,&nbsp;Denis Johnson ,&nbsp;Soumalya Ghosh ,&nbsp;Sricharani Rao Balmuri ,&nbsp;Huda Usman ,&nbsp;Shakira M. Martínez Vásquez ,&nbsp;David Kumar Yesudoss ,&nbsp;Abdoulaye Djire ,&nbsp;Mostafa Bedewy ,&nbsp;Tagbo H.R. Niepa\",\"doi\":\"10.1016/j.bioflm.2025.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Staphylococcus aureus</em> is the leading cause of skin infections in the U.S., and its rapid evolution and resistance to antibiotics create a barrier to effective treatment. In this study, we engineered a composite membrane with bacterial cellulose and carbon nanotubes (BC-CNT) as an electroactive dressing to rapidly eradicate vancomycin-intermediate <em>S. aureus</em>. Nonpathogenic <em>Komagataeibacter sucrofermentans</em> produced the BC membrane at an air-liquid interface. Then, carboxyl-functionalized multi-walled CNTs were integrated into decellularized BC to create stable and electrically conductive BC-CNT dressings. The electric potential and ionic flux across BC-CNT were modeled and standardized via chronoamperometry for experimental validation. We found that treatment with electroactive BC-CNT increases <em>S. aureus</em> sensitivity to vancomycin and prevents macro-scale biofilm formation. The bactericidal efficacy of the composite membrane is consistent with electrochemical stress caused by voltage mediated with BC-CNT. After a single hour of combinatorial electrical and drug treatment, biofilm-forming capacity was inhibited by nearly 92 %. These results advance applications of electrochemistry in medicine and create a new direction to overcome <em>S. aureus</em> infections on skin and soft tissues.</div></div>\",\"PeriodicalId\":55844,\"journal\":{\"name\":\"Biofilm\",\"volume\":\"10 \",\"pages\":\"Article 100305\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofilm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259020752500053X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259020752500053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌是美国皮肤感染的主要原因,它的快速进化和对抗生素的耐药性为有效治疗创造了障碍。在这项研究中,我们设计了一种由细菌纤维素和碳纳米管(BC-CNT)作为电活性敷料的复合膜,以快速根除万古霉素中间体金黄色葡萄球菌。非致病性上发酵komagataeibacterium sucrofermentans在气液界面产生BC膜。然后,将羧基功能化的多壁碳纳米管整合到去细胞化的BC中,以创建稳定且导电的BC-碳纳米管敷料。通过计时电流法对BC-CNT的电势和离子通量进行了建模和标准化,以进行实验验证。我们发现电活性BC-CNT处理增加了金黄色葡萄球菌对万古霉素的敏感性,并阻止了宏观生物膜的形成。复合膜的杀菌效果与bc -碳纳米管介导的电压引起的电化学应力一致。经过一个小时的电和药物组合处理,生物膜形成能力被抑制了近92%。这些结果促进了电化学在医学上的应用,为克服皮肤和软组织金黄色葡萄球菌感染开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering an electroactive bacterial cellulose-carbon nanotube composite membrane against Staphylococcus aureus
Staphylococcus aureus is the leading cause of skin infections in the U.S., and its rapid evolution and resistance to antibiotics create a barrier to effective treatment. In this study, we engineered a composite membrane with bacterial cellulose and carbon nanotubes (BC-CNT) as an electroactive dressing to rapidly eradicate vancomycin-intermediate S. aureus. Nonpathogenic Komagataeibacter sucrofermentans produced the BC membrane at an air-liquid interface. Then, carboxyl-functionalized multi-walled CNTs were integrated into decellularized BC to create stable and electrically conductive BC-CNT dressings. The electric potential and ionic flux across BC-CNT were modeled and standardized via chronoamperometry for experimental validation. We found that treatment with electroactive BC-CNT increases S. aureus sensitivity to vancomycin and prevents macro-scale biofilm formation. The bactericidal efficacy of the composite membrane is consistent with electrochemical stress caused by voltage mediated with BC-CNT. After a single hour of combinatorial electrical and drug treatment, biofilm-forming capacity was inhibited by nearly 92 %. These results advance applications of electrochemistry in medicine and create a new direction to overcome S. aureus infections on skin and soft tissues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信