复合腐蚀环境和循环载荷作用下镁合金MAO/GPTMS涂层性能的退化

IF 13.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Shuya Mao, Di Mei, Weizheng Cui, Mengyao Liu, Jiale Xu, Shijie Zhu, Liguo Wang, Shaokang Guan
{"title":"复合腐蚀环境和循环载荷作用下镁合金MAO/GPTMS涂层性能的退化","authors":"Shuya Mao, Di Mei, Weizheng Cui, Mengyao Liu, Jiale Xu, Shijie Zhu, Liguo Wang, Shaokang Guan","doi":"10.1016/j.jma.2025.07.001","DOIUrl":null,"url":null,"abstract":"Magnesium alloys hold promise as biodegradable orthopedic implants but suffer from rapid corrosion and poor corrosion fatigue performance. This study evaluates the efficacy of a micro-arc oxidation (MAO) layer combined with 3-glycidyloxypropyltrimethoxysilane (GPTMS) sealing in enhancing the corrosion fatigue behavior of ZE21B magnesium alloy in Hanks’ Balanced Salt Solution (HBSS). Electrochemical testing revealed a two-order-of-magnitude reduction in corrosion current density compared to bare alloy, while immersion tests demonstrated sustained protection against degradation. Corrosion fatigue experiments under cyclic loading showed stress-dependent performance: the composite coating improved fatigue life at low stress amplitudes (60 MPa) by mitigating corrosion pit formation, but interfacial weakness between GPTMS and MAO layers reduced performance at high stresses (90–80 MPa). Fractographic analysis identified asynchronous deformation and stress gradient-dependent coating spallation as key failure modes. These results provide mechanistic insights into coating degradation pathways and offer design strategies for developing robust surface modification systems to advance magnesium-based orthopedic applications.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"23 1","pages":""},"PeriodicalIF":13.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The performance degradation of MAO/GPTMS coating on magnesium alloy under combined corrosive environment and cyclic loading\",\"authors\":\"Shuya Mao, Di Mei, Weizheng Cui, Mengyao Liu, Jiale Xu, Shijie Zhu, Liguo Wang, Shaokang Guan\",\"doi\":\"10.1016/j.jma.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium alloys hold promise as biodegradable orthopedic implants but suffer from rapid corrosion and poor corrosion fatigue performance. This study evaluates the efficacy of a micro-arc oxidation (MAO) layer combined with 3-glycidyloxypropyltrimethoxysilane (GPTMS) sealing in enhancing the corrosion fatigue behavior of ZE21B magnesium alloy in Hanks’ Balanced Salt Solution (HBSS). Electrochemical testing revealed a two-order-of-magnitude reduction in corrosion current density compared to bare alloy, while immersion tests demonstrated sustained protection against degradation. Corrosion fatigue experiments under cyclic loading showed stress-dependent performance: the composite coating improved fatigue life at low stress amplitudes (60 MPa) by mitigating corrosion pit formation, but interfacial weakness between GPTMS and MAO layers reduced performance at high stresses (90–80 MPa). Fractographic analysis identified asynchronous deformation and stress gradient-dependent coating spallation as key failure modes. These results provide mechanistic insights into coating degradation pathways and offer design strategies for developing robust surface modification systems to advance magnesium-based orthopedic applications.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.07.001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.07.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

镁合金有望成为生物可降解的骨科植入物,但其腐蚀速度快,腐蚀疲劳性能差。本研究评价了微弧氧化(MAO)层与3-缩水甘油酯氧基丙基三甲氧基硅烷(GPTMS)密封对ZE21B镁合金在汉克斯平衡盐溶液(HBSS)中腐蚀疲劳性能的改善效果。电化学测试显示,与裸合金相比,腐蚀电流密度降低了两个数量级,而浸泡测试则显示了持久的抗降解保护。循环加载下的腐蚀疲劳实验显示出应力依赖性:复合涂层通过减少腐蚀坑的形成提高了低应力幅值(60 MPa)下的疲劳寿命,但GPTMS和MAO层之间的界面弱点降低了高应力(90-80 MPa)下的疲劳寿命。断口分析发现,非同步变形和应力梯度相关的涂层剥落是主要的失效模式。这些结果为涂层降解途径提供了机理见解,并为开发强大的表面改性系统提供了设计策略,以推进镁基骨科应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The performance degradation of MAO/GPTMS coating on magnesium alloy under combined corrosive environment and cyclic loading

The performance degradation of MAO/GPTMS coating on magnesium alloy under combined corrosive environment and cyclic loading
Magnesium alloys hold promise as biodegradable orthopedic implants but suffer from rapid corrosion and poor corrosion fatigue performance. This study evaluates the efficacy of a micro-arc oxidation (MAO) layer combined with 3-glycidyloxypropyltrimethoxysilane (GPTMS) sealing in enhancing the corrosion fatigue behavior of ZE21B magnesium alloy in Hanks’ Balanced Salt Solution (HBSS). Electrochemical testing revealed a two-order-of-magnitude reduction in corrosion current density compared to bare alloy, while immersion tests demonstrated sustained protection against degradation. Corrosion fatigue experiments under cyclic loading showed stress-dependent performance: the composite coating improved fatigue life at low stress amplitudes (60 MPa) by mitigating corrosion pit formation, but interfacial weakness between GPTMS and MAO layers reduced performance at high stresses (90–80 MPa). Fractographic analysis identified asynchronous deformation and stress gradient-dependent coating spallation as key failure modes. These results provide mechanistic insights into coating degradation pathways and offer design strategies for developing robust surface modification systems to advance magnesium-based orthopedic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信