通过合成后改性在金属有机骨架中引入金属硫活性位点用于加氢催化

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haomiao Xie, Milad Ahmadi Khoshooei, Mukunda Mandal, Simon M. Vornholt, Jan Hofmann, Luke M. Tufaro, Kent O. Kirlikovali, Dawson A. Grimes, Seryeong Lee, Shengyi Su, Susanne Reischauer, Debabrata Sengupta, Kira Fahy, Kaikai Ma, Xiaoliang Wang, Fanrui Sha, Wei Gong, Yongwei Che, Jenny G. Vitillo, John S. Anderson, Justin M. Notestein, Karena W. Chapman, Laura Gagliardi, Omar K. Farha
{"title":"通过合成后改性在金属有机骨架中引入金属硫活性位点用于加氢催化","authors":"Haomiao Xie, Milad Ahmadi Khoshooei, Mukunda Mandal, Simon M. Vornholt, Jan Hofmann, Luke M. Tufaro, Kent O. Kirlikovali, Dawson A. Grimes, Seryeong Lee, Shengyi Su, Susanne Reischauer, Debabrata Sengupta, Kira Fahy, Kaikai Ma, Xiaoliang Wang, Fanrui Sha, Wei Gong, Yongwei Che, Jenny G. Vitillo, John S. Anderson, Justin M. Notestein, Karena W. Chapman, Laura Gagliardi, Omar K. Farha","doi":"10.1038/s41557-025-01876-y","DOIUrl":null,"url":null,"abstract":"<p>Metal–sulfur active sites play a central role in catalytic processes such as hydrogenation and dehydrogenation, yet the majority of active sites in these compounds reside on the surfaces and edges of catalyst particles, limiting overall efficiency. Here we present a strategy to embed metal–sulfur active sites into metal–organic frameworks (MOFs) by converting bridging or terminal chloride ligands into hydroxide and subsequently into sulfide groups through post-synthetic modification. We apply this method to two representative MOF families: one featuring one-dimensional metal–chloride chains and another containing discrete multinuclear metal clusters. Crystallographic and spectroscopic analyses confirm structural integrity and sulfide incorporation, and the transformation is monitored by in situ total scattering methods. The sulfided MOFs display enhanced catalytic activity in the selective hydrogenation of nitroarenes using molecular hydrogen. Density functional theory calculations indicate that sulfur incorporation promotes homolytic metal–ligand bond cleavage and facilitates H<sub>2</sub> activation. This work establishes an approach to construct MOFs featuring accessible metal–sulfide sites.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"23 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing metal–sulfur active sites in metal–organic frameworks via post-synthetic modification for hydrogenation catalysis\",\"authors\":\"Haomiao Xie, Milad Ahmadi Khoshooei, Mukunda Mandal, Simon M. Vornholt, Jan Hofmann, Luke M. Tufaro, Kent O. Kirlikovali, Dawson A. Grimes, Seryeong Lee, Shengyi Su, Susanne Reischauer, Debabrata Sengupta, Kira Fahy, Kaikai Ma, Xiaoliang Wang, Fanrui Sha, Wei Gong, Yongwei Che, Jenny G. Vitillo, John S. Anderson, Justin M. Notestein, Karena W. Chapman, Laura Gagliardi, Omar K. Farha\",\"doi\":\"10.1038/s41557-025-01876-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal–sulfur active sites play a central role in catalytic processes such as hydrogenation and dehydrogenation, yet the majority of active sites in these compounds reside on the surfaces and edges of catalyst particles, limiting overall efficiency. Here we present a strategy to embed metal–sulfur active sites into metal–organic frameworks (MOFs) by converting bridging or terminal chloride ligands into hydroxide and subsequently into sulfide groups through post-synthetic modification. We apply this method to two representative MOF families: one featuring one-dimensional metal–chloride chains and another containing discrete multinuclear metal clusters. Crystallographic and spectroscopic analyses confirm structural integrity and sulfide incorporation, and the transformation is monitored by in situ total scattering methods. The sulfided MOFs display enhanced catalytic activity in the selective hydrogenation of nitroarenes using molecular hydrogen. Density functional theory calculations indicate that sulfur incorporation promotes homolytic metal–ligand bond cleavage and facilitates H<sub>2</sub> activation. This work establishes an approach to construct MOFs featuring accessible metal–sulfide sites.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-025-01876-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01876-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属硫活性位点在加氢和脱氢等催化过程中起着核心作用,但这些化合物中的大多数活性位点位于催化剂颗粒的表面和边缘,限制了整体效率。本文提出了一种将金属硫活性位点嵌入金属有机框架(mof)的策略,通过将桥接或末端氯配体转化为氢氧化物,然后通过合成后修饰转化为硫化物基团。我们将这种方法应用于两个具有代表性的MOF族:一个具有一维金属氯链,另一个包含离散的多核金属簇。晶体学和光谱分析证实了结构的完整性和硫化物的掺入,并通过原位全散射方法监测了相变。硫化mof在硝基芳烃分子氢选择性加氢反应中表现出较强的催化活性。密度泛函理论计算表明,硫的加入促进了金属-配体键的均裂,促进了H2的活化。本工作建立了一种构建具有可达金属硫化物位点的mof的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Introducing metal–sulfur active sites in metal–organic frameworks via post-synthetic modification for hydrogenation catalysis

Introducing metal–sulfur active sites in metal–organic frameworks via post-synthetic modification for hydrogenation catalysis

Metal–sulfur active sites play a central role in catalytic processes such as hydrogenation and dehydrogenation, yet the majority of active sites in these compounds reside on the surfaces and edges of catalyst particles, limiting overall efficiency. Here we present a strategy to embed metal–sulfur active sites into metal–organic frameworks (MOFs) by converting bridging or terminal chloride ligands into hydroxide and subsequently into sulfide groups through post-synthetic modification. We apply this method to two representative MOF families: one featuring one-dimensional metal–chloride chains and another containing discrete multinuclear metal clusters. Crystallographic and spectroscopic analyses confirm structural integrity and sulfide incorporation, and the transformation is monitored by in situ total scattering methods. The sulfided MOFs display enhanced catalytic activity in the selective hydrogenation of nitroarenes using molecular hydrogen. Density functional theory calculations indicate that sulfur incorporation promotes homolytic metal–ligand bond cleavage and facilitates H2 activation. This work establishes an approach to construct MOFs featuring accessible metal–sulfide sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信