阴道毛滴虫的比较基因组学揭示了从鸟类向人类溢出的基因

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Steven A. Sullivan, Jordan C. Orosco, Francisco Callejas-Hernández, Frances Blow, Hayan Lee, T. Rhyker Ranallo-Benavidez, Andrew Peters, Shane R. Raidal, Yvette A. Girard, Christine K. Johnson, Krysta H. Rogers, Richard Gerhold, Hayley Mangelson, Ivan Liachko, Harsh Srivastava, Chris Chandler, Daniel Berenberg, Richard A. Bonneau, Po-Jung Huang, Yuan-Ming Yeh, Chi-Ching Lee, Hsuan Liu, Ting-Wen Chen, Petrus Tang, Cheng-Hsun Chiu, Michael C. Schatz, Jane M. Carlton
{"title":"阴道毛滴虫的比较基因组学揭示了从鸟类向人类溢出的基因","authors":"Steven A. Sullivan, Jordan C. Orosco, Francisco Callejas-Hernández, Frances Blow, Hayan Lee, T. Rhyker Ranallo-Benavidez, Andrew Peters, Shane R. Raidal, Yvette A. Girard, Christine K. Johnson, Krysta H. Rogers, Richard Gerhold, Hayley Mangelson, Ivan Liachko, Harsh Srivastava, Chris Chandler, Daniel Berenberg, Richard A. Bonneau, Po-Jung Huang, Yuan-Ming Yeh, Chi-Ching Lee, Hsuan Liu, Ting-Wen Chen, Petrus Tang, Cheng-Hsun Chiu, Michael C. Schatz, Jane M. Carlton","doi":"10.1038/s41467-025-61483-w","DOIUrl":null,"url":null,"abstract":"<p><i>Trichomonas vaginalis</i>, the causative agent of the venereal disease trichomoniasis, infects men and women globally and is associated with serious outcomes during pregnancy, increased risk of HIV-1 infection, and cancers of the human reproductive tract. Species of trichomonad parasitize a range of hosts in addition to humans, including birds, livestock, and pets. Genetic analysis of trichomonads recovered from columbid birds has provided evidence that they undergo frequent host-switching, and that a spillover event from columbids likely gave rise to <i>T. vaginalis</i> in humans. Here we describe a comparative genomics study of seven trichomonad species, generating chromosome-scale reference genomes for <i>T. vaginalis</i> and its avian sister species <i>Trichomonas stableri</i>, and assemblies of five other species that infect birds and mammals. Human-infecting trichomonad lineages have undergone recent and convergent genome size expansions compared to their avian sister species, a result of extensive repeat expansions specifically of multicopy gene families and transposable elements, with genetic drift likely a driver due to relaxed selection. Trichomonads are thought to have independently host-switched twice from birds to mammals/humans. We identify gene functions implicated in the transition, including host tissue adherence and phagocytosis, extracellular vesicle formation, and CAZyme virulence factors, which are all associated with pathogenesis phenotypes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"117 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative genomics of the parasite Trichomonas vaginalis reveals genes involved in spillover from birds to humans\",\"authors\":\"Steven A. Sullivan, Jordan C. Orosco, Francisco Callejas-Hernández, Frances Blow, Hayan Lee, T. Rhyker Ranallo-Benavidez, Andrew Peters, Shane R. Raidal, Yvette A. Girard, Christine K. Johnson, Krysta H. Rogers, Richard Gerhold, Hayley Mangelson, Ivan Liachko, Harsh Srivastava, Chris Chandler, Daniel Berenberg, Richard A. Bonneau, Po-Jung Huang, Yuan-Ming Yeh, Chi-Ching Lee, Hsuan Liu, Ting-Wen Chen, Petrus Tang, Cheng-Hsun Chiu, Michael C. Schatz, Jane M. Carlton\",\"doi\":\"10.1038/s41467-025-61483-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Trichomonas vaginalis</i>, the causative agent of the venereal disease trichomoniasis, infects men and women globally and is associated with serious outcomes during pregnancy, increased risk of HIV-1 infection, and cancers of the human reproductive tract. Species of trichomonad parasitize a range of hosts in addition to humans, including birds, livestock, and pets. Genetic analysis of trichomonads recovered from columbid birds has provided evidence that they undergo frequent host-switching, and that a spillover event from columbids likely gave rise to <i>T. vaginalis</i> in humans. Here we describe a comparative genomics study of seven trichomonad species, generating chromosome-scale reference genomes for <i>T. vaginalis</i> and its avian sister species <i>Trichomonas stableri</i>, and assemblies of five other species that infect birds and mammals. Human-infecting trichomonad lineages have undergone recent and convergent genome size expansions compared to their avian sister species, a result of extensive repeat expansions specifically of multicopy gene families and transposable elements, with genetic drift likely a driver due to relaxed selection. Trichomonads are thought to have independently host-switched twice from birds to mammals/humans. We identify gene functions implicated in the transition, including host tissue adherence and phagocytosis, extracellular vesicle formation, and CAZyme virulence factors, which are all associated with pathogenesis phenotypes.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61483-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61483-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阴道毛滴虫是性疾病滴虫病的病原体,在全球范围内感染男性和女性,并与怀孕期间的严重后果、艾滋病毒-1感染风险增加和人类生殖道癌症有关。滴虫除了寄生于人类之外,还寄生于多种宿主,包括鸟类、牲畜和宠物。从柱形鸟身上发现的滴虫的遗传分析提供了证据,证明它们经历了频繁的宿主转换,并且柱形鸟的溢出事件可能导致了人类的阴道滴虫。本文对7种滴虫进行了比较基因组学研究,生成了阴道滴虫及其鸟类姐妹种稳定滴虫以及其他5种感染鸟类和哺乳动物的滴虫的染色体尺度参考基因组。与禽类姐妹物种相比,感染人类的滴虫谱系最近经历了基因组大小的趋同扩展,这是多拷贝基因家族和转座元件广泛重复扩展的结果,由于宽松的选择,遗传漂变可能是驱动因素。滴虫被认为两次从鸟类到哺乳动物/人类的宿主独立切换。我们确定了与转移相关的基因功能,包括宿主组织粘附和吞噬,细胞外囊泡形成和CAZyme毒力因子,这些都与发病表型相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparative genomics of the parasite Trichomonas vaginalis reveals genes involved in spillover from birds to humans

Comparative genomics of the parasite Trichomonas vaginalis reveals genes involved in spillover from birds to humans

Trichomonas vaginalis, the causative agent of the venereal disease trichomoniasis, infects men and women globally and is associated with serious outcomes during pregnancy, increased risk of HIV-1 infection, and cancers of the human reproductive tract. Species of trichomonad parasitize a range of hosts in addition to humans, including birds, livestock, and pets. Genetic analysis of trichomonads recovered from columbid birds has provided evidence that they undergo frequent host-switching, and that a spillover event from columbids likely gave rise to T. vaginalis in humans. Here we describe a comparative genomics study of seven trichomonad species, generating chromosome-scale reference genomes for T. vaginalis and its avian sister species Trichomonas stableri, and assemblies of five other species that infect birds and mammals. Human-infecting trichomonad lineages have undergone recent and convergent genome size expansions compared to their avian sister species, a result of extensive repeat expansions specifically of multicopy gene families and transposable elements, with genetic drift likely a driver due to relaxed selection. Trichomonads are thought to have independently host-switched twice from birds to mammals/humans. We identify gene functions implicated in the transition, including host tissue adherence and phagocytosis, extracellular vesicle formation, and CAZyme virulence factors, which are all associated with pathogenesis phenotypes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信