S-scheme水合melem /g-C3N5异质结在LED光照射下增强光催化性能的构建

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Vinh Huu Nguyen, Taeyoon Lee, Trinh Duy Nguyen
{"title":"S-scheme水合melem /g-C3N5异质结在LED光照射下增强光催化性能的构建","authors":"Vinh Huu Nguyen, Taeyoon Lee, Trinh Duy Nguyen","doi":"10.1016/j.apsusc.2025.164121","DOIUrl":null,"url":null,"abstract":"The optical and electronic properties of g-C<sub>3</sub>N<sub>5</sub> make it a promising photocatalytic material, yet bulk g-C<sub>3</sub>N<sub>5</sub> suffers from high charge recombination and trapping, limiting its effectiveness. Our study addresses these challenges through a controlled acid treatment of bulk g-C<sub>3</sub>N<sub>5</sub> using a concentrated H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub> mixture. This process exfoliates g-C<sub>3</sub>N<sub>5</sub> into nanosheets while simultaneously fragmenting it into melem units and assembling these fragments into rod-like melem structures. These interconnected structures within the melem hydrate/g-C<sub>3</sub>N<sub>5</sub> composite form effective charge-transfer bridges, enabling enhanced charge migration between melem hydrate and g-C<sub>3</sub>N<sub>5</sub> components. The hybrid melem hydrate/g-C<sub>3</sub>N<sub>5</sub> catalyst demonstrated a remarkable tetracycline hydrochloride (TCH) degradation efficiency of 98.80 %, significantly outperforming the 50.55 % degradation achieved by bulk g-C<sub>3</sub>N<sub>5</sub>. This is due to increased surface area and the formation of an S-scheme heterojunction, promoting effective charge separation. The study also examines the impact of reaction parameters like pH and catalyst concentration on degradation efficiency, and investigates degradation pathways and toxicity using LC-MS and ECOSAR. This research provides an effective strategy for designing S-scheme heterojunction materials based on g-C<sub>3</sub>N<sub>5</sub>, significantly enhancing the photocatalytic activity of g-C<sub>3</sub>N<sub>5</sub> and broadening the potential application of of g-C<sub>3</sub>N<sub>5</sub>-based systems.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"18 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of S-scheme melem hydrate/g-C3N5 heterojunction for enhanced photocatalytic performance under LED light irradiation\",\"authors\":\"Vinh Huu Nguyen, Taeyoon Lee, Trinh Duy Nguyen\",\"doi\":\"10.1016/j.apsusc.2025.164121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical and electronic properties of g-C<sub>3</sub>N<sub>5</sub> make it a promising photocatalytic material, yet bulk g-C<sub>3</sub>N<sub>5</sub> suffers from high charge recombination and trapping, limiting its effectiveness. Our study addresses these challenges through a controlled acid treatment of bulk g-C<sub>3</sub>N<sub>5</sub> using a concentrated H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub> mixture. This process exfoliates g-C<sub>3</sub>N<sub>5</sub> into nanosheets while simultaneously fragmenting it into melem units and assembling these fragments into rod-like melem structures. These interconnected structures within the melem hydrate/g-C<sub>3</sub>N<sub>5</sub> composite form effective charge-transfer bridges, enabling enhanced charge migration between melem hydrate and g-C<sub>3</sub>N<sub>5</sub> components. The hybrid melem hydrate/g-C<sub>3</sub>N<sub>5</sub> catalyst demonstrated a remarkable tetracycline hydrochloride (TCH) degradation efficiency of 98.80 %, significantly outperforming the 50.55 % degradation achieved by bulk g-C<sub>3</sub>N<sub>5</sub>. This is due to increased surface area and the formation of an S-scheme heterojunction, promoting effective charge separation. The study also examines the impact of reaction parameters like pH and catalyst concentration on degradation efficiency, and investigates degradation pathways and toxicity using LC-MS and ECOSAR. This research provides an effective strategy for designing S-scheme heterojunction materials based on g-C<sub>3</sub>N<sub>5</sub>, significantly enhancing the photocatalytic activity of g-C<sub>3</sub>N<sub>5</sub> and broadening the potential application of of g-C<sub>3</sub>N<sub>5</sub>-based systems.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2025.164121\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.164121","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

g-C3N5的光学和电子特性使其成为一种很有前途的光催化材料,但g-C3N5本体存在高电荷重组和捕获的问题,限制了它的有效性。我们的研究通过使用浓H2SO4/HNO3混合物对大块g-C3N5进行控制酸处理来解决这些挑战。这个过程将g-C3N5剥离成纳米片,同时将其分割成melem单元,并将这些片段组装成棒状melem结构。在melem水合物/g-C3N5复合材料中,这些相互连接的结构形成了有效的电荷转移桥,增强了melem水合物和g-C3N5组分之间的电荷迁移。该催化剂对盐酸四环素(TCH)的降解效率为98.80 %,明显优于本体g-C3N5的50.55 %。这是由于增加了表面积和形成了s型异质结,促进了有效的电荷分离。该研究还考察了pH和催化剂浓度等反应参数对降解效率的影响,并利用LC-MS和ECOSAR研究了降解途径和毒性。本研究为设计基于g-C3N5的s型异质结材料提供了有效的策略,显著提高了g-C3N5的光催化活性,拓宽了g-C3N5基体系的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of S-scheme melem hydrate/g-C3N5 heterojunction for enhanced photocatalytic performance under LED light irradiation

Construction of S-scheme melem hydrate/g-C3N5 heterojunction for enhanced photocatalytic performance under LED light irradiation
The optical and electronic properties of g-C3N5 make it a promising photocatalytic material, yet bulk g-C3N5 suffers from high charge recombination and trapping, limiting its effectiveness. Our study addresses these challenges through a controlled acid treatment of bulk g-C3N5 using a concentrated H2SO4/HNO3 mixture. This process exfoliates g-C3N5 into nanosheets while simultaneously fragmenting it into melem units and assembling these fragments into rod-like melem structures. These interconnected structures within the melem hydrate/g-C3N5 composite form effective charge-transfer bridges, enabling enhanced charge migration between melem hydrate and g-C3N5 components. The hybrid melem hydrate/g-C3N5 catalyst demonstrated a remarkable tetracycline hydrochloride (TCH) degradation efficiency of 98.80 %, significantly outperforming the 50.55 % degradation achieved by bulk g-C3N5. This is due to increased surface area and the formation of an S-scheme heterojunction, promoting effective charge separation. The study also examines the impact of reaction parameters like pH and catalyst concentration on degradation efficiency, and investigates degradation pathways and toxicity using LC-MS and ECOSAR. This research provides an effective strategy for designing S-scheme heterojunction materials based on g-C3N5, significantly enhancing the photocatalytic activity of g-C3N5 and broadening the potential application of of g-C3N5-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信