β-Ga2O3在CO2加氢过程中构型和化学计量空间的氢化物可及性和反应性。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Margareth S. Baidun, Alexander A. Kolganov, Anastassia N. Alexandrova and Evgeny A. Pidko*, 
{"title":"β-Ga2O3在CO2加氢过程中构型和化学计量空间的氢化物可及性和反应性。","authors":"Margareth S. Baidun,&nbsp;Alexander A. Kolganov,&nbsp;Anastassia N. Alexandrova and Evgeny A. Pidko*,&nbsp;","doi":"10.1021/acs.jpclett.5c01571","DOIUrl":null,"url":null,"abstract":"<p >Understanding how surface species evolve under reaction conditions is essential for improving catalyst design for efficient CO<sub>2</sub> hydrogenation. This work combines systematic DFT calculations with grand canonical sampling to investigate the stability and reactivity of Ga–H species on β-Ga<sub>2</sub>O<sub>3</sub> across a range of reaction conditions. Initial DFT studies reveal that when Ga–H species are present, they facilitate formate formation via a low-barrier pathway, largely independent of the surface termination or hydrogen site. However, grand canonical sampling shows that under a broad range of reaction conditions─especially at high oxygen chemical potentials associated with high water content─Ga–H species are thermodynamically inaccessible. Furthermore, adsorbed water molecules can block reactive sites, inhibiting CO<sub>2</sub> activation even when hydrides are present. These findings suggest that the lack of accessible hydride species, rather than their intrinsic reactivity, could contribute to reduced catalytic performance of β-Ga<sub>2</sub>O<sub>3</sub> under more oxidizing, high-conversion conditions.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 30","pages":"7732–7737"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c01571","citationCount":"0","resultStr":"{\"title\":\"Hydride Accessibility and Reactivity in the Configurational and Stoichiometric Space of β-Ga2O3 for CO2 Hydrogenation\",\"authors\":\"Margareth S. Baidun,&nbsp;Alexander A. Kolganov,&nbsp;Anastassia N. Alexandrova and Evgeny A. Pidko*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding how surface species evolve under reaction conditions is essential for improving catalyst design for efficient CO<sub>2</sub> hydrogenation. This work combines systematic DFT calculations with grand canonical sampling to investigate the stability and reactivity of Ga–H species on β-Ga<sub>2</sub>O<sub>3</sub> across a range of reaction conditions. Initial DFT studies reveal that when Ga–H species are present, they facilitate formate formation via a low-barrier pathway, largely independent of the surface termination or hydrogen site. However, grand canonical sampling shows that under a broad range of reaction conditions─especially at high oxygen chemical potentials associated with high water content─Ga–H species are thermodynamically inaccessible. Furthermore, adsorbed water molecules can block reactive sites, inhibiting CO<sub>2</sub> activation even when hydrides are present. These findings suggest that the lack of accessible hydride species, rather than their intrinsic reactivity, could contribute to reduced catalytic performance of β-Ga<sub>2</sub>O<sub>3</sub> under more oxidizing, high-conversion conditions.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 30\",\"pages\":\"7732–7737\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c01571\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01571\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01571","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解表面物质在反应条件下是如何进化的,对于改进催化剂设计以实现高效的CO2加氢是必不可少的。这项工作结合了系统DFT计算和大标准抽样来研究Ga-H物质在β-Ga2O3上的稳定性和反应性。最初的DFT研究表明,当Ga-H物质存在时,它们通过低屏障途径促进甲酸形成,很大程度上独立于表面终止或氢位点。然而,大正则抽样表明,在广泛的反应条件下,特别是在高氧化学势与高含水量相关的情况下,Ga-H物质在热力学上是不可接近的。此外,吸附的水分子可以阻断反应位点,即使在氢化物存在的情况下也能抑制CO2的活化。这些发现表明,缺乏可接近的氢化物,而不是其固有的反应活性,可能导致β-Ga2O3在氧化性更强、转化率更高的条件下催化性能降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydride Accessibility and Reactivity in the Configurational and Stoichiometric Space of β-Ga2O3 for CO2 Hydrogenation

Understanding how surface species evolve under reaction conditions is essential for improving catalyst design for efficient CO2 hydrogenation. This work combines systematic DFT calculations with grand canonical sampling to investigate the stability and reactivity of Ga–H species on β-Ga2O3 across a range of reaction conditions. Initial DFT studies reveal that when Ga–H species are present, they facilitate formate formation via a low-barrier pathway, largely independent of the surface termination or hydrogen site. However, grand canonical sampling shows that under a broad range of reaction conditions─especially at high oxygen chemical potentials associated with high water content─Ga–H species are thermodynamically inaccessible. Furthermore, adsorbed water molecules can block reactive sites, inhibiting CO2 activation even when hydrides are present. These findings suggest that the lack of accessible hydride species, rather than their intrinsic reactivity, could contribute to reduced catalytic performance of β-Ga2O3 under more oxidizing, high-conversion conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信