逆光刻技术的进展与挑战:基于人工智能的方法综述。

IF 20.6 Q1 OPTICS
Yixin Yang,Kexuan Liu,Yunhui Gao,Chen Wang,Liangcai Cao
{"title":"逆光刻技术的进展与挑战:基于人工智能的方法综述。","authors":"Yixin Yang,Kexuan Liu,Yunhui Gao,Chen Wang,Liangcai Cao","doi":"10.1038/s41377-025-01923-w","DOIUrl":null,"url":null,"abstract":"Inverse lithography technology (ILT) is a promising approach in computational lithography to address the challenges posed by shrinking semiconductor device dimensions. The ILT leverages optimization algorithms to generate mask patterns, outperforming traditional optical proximity correction methods. This review provides an overview of ILT's principles, evolution, and applications, with an emphasis on integration with artificial intelligence (AI) techniques. The review tracks recent advancements of ILT in model improvement and algorithmic efficiency. Challenges such as extended computational runtimes and mask-writing complexities are summarized, with potential solutions discussed. Despite these challenges, AI-driven methods, such as convolutional neural networks, deep neural networks, generative adversarial networks, and model-driven deep learning methods, are transforming ILT. AI-based approaches offer promising pathways to overcome existing limitations and support the adoption in high-volume manufacturing. Future research directions are explored to exploit ILT's potential and drive progress in the semiconductor industry.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"90 1","pages":"250"},"PeriodicalIF":20.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements and challenges in inverse lithography technology: a review of artificial intelligence-based approaches.\",\"authors\":\"Yixin Yang,Kexuan Liu,Yunhui Gao,Chen Wang,Liangcai Cao\",\"doi\":\"10.1038/s41377-025-01923-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse lithography technology (ILT) is a promising approach in computational lithography to address the challenges posed by shrinking semiconductor device dimensions. The ILT leverages optimization algorithms to generate mask patterns, outperforming traditional optical proximity correction methods. This review provides an overview of ILT's principles, evolution, and applications, with an emphasis on integration with artificial intelligence (AI) techniques. The review tracks recent advancements of ILT in model improvement and algorithmic efficiency. Challenges such as extended computational runtimes and mask-writing complexities are summarized, with potential solutions discussed. Despite these challenges, AI-driven methods, such as convolutional neural networks, deep neural networks, generative adversarial networks, and model-driven deep learning methods, are transforming ILT. AI-based approaches offer promising pathways to overcome existing limitations and support the adoption in high-volume manufacturing. Future research directions are explored to exploit ILT's potential and drive progress in the semiconductor industry.\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"90 1\",\"pages\":\"250\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01923-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01923-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

逆光刻技术(ILT)是一种很有前途的计算光刻技术,可以解决半导体器件尺寸缩小带来的挑战。ILT利用优化算法生成掩模模式,优于传统的光学接近校正方法。本文综述了ILT的原理、发展和应用,重点介绍了与人工智能(AI)技术的集成。回顾了ILT在模型改进和算法效率方面的最新进展。总结了诸如扩展计算运行时和掩码写入复杂性等挑战,并讨论了潜在的解决方案。尽管存在这些挑战,人工智能驱动的方法,如卷积神经网络、深度神经网络、生成对抗网络和模型驱动的深度学习方法,正在改变ILT。基于人工智能的方法为克服现有限制和支持大批量生产提供了有希望的途径。展望未来的研究方向,以挖掘ILT的潜力,推动半导体产业的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements and challenges in inverse lithography technology: a review of artificial intelligence-based approaches.
Inverse lithography technology (ILT) is a promising approach in computational lithography to address the challenges posed by shrinking semiconductor device dimensions. The ILT leverages optimization algorithms to generate mask patterns, outperforming traditional optical proximity correction methods. This review provides an overview of ILT's principles, evolution, and applications, with an emphasis on integration with artificial intelligence (AI) techniques. The review tracks recent advancements of ILT in model improvement and algorithmic efficiency. Challenges such as extended computational runtimes and mask-writing complexities are summarized, with potential solutions discussed. Despite these challenges, AI-driven methods, such as convolutional neural networks, deep neural networks, generative adversarial networks, and model-driven deep learning methods, are transforming ILT. AI-based approaches offer promising pathways to overcome existing limitations and support the adoption in high-volume manufacturing. Future research directions are explored to exploit ILT's potential and drive progress in the semiconductor industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信