ni复合La3-xTe4热电材料的电与热输运特性解耦。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Cao, Feng Qiao, Jun-Yu Zhu, Qian Liu, Ke-Feng Liu, Tian Zhou, Xu-Feng Hou*, Xiao-Cun Liu and Sheng-Qing Xia*, 
{"title":"ni复合La3-xTe4热电材料的电与热输运特性解耦。","authors":"Yan Cao,&nbsp;Feng Qiao,&nbsp;Jun-Yu Zhu,&nbsp;Qian Liu,&nbsp;Ke-Feng Liu,&nbsp;Tian Zhou,&nbsp;Xu-Feng Hou*,&nbsp;Xiao-Cun Liu and Sheng-Qing Xia*,&nbsp;","doi":"10.1021/acsami.5c09942","DOIUrl":null,"url":null,"abstract":"<p >With excellent high-temperature thermoelectric performance, La<sub>3–<i>x</i></sub>Te<sub>4</sub> materials are considered leading candidates for the next generation of radioisotope thermoelectric generators. Despite this, conventional optimization strategies, such as element doping, have shown only a marginal improvement in their properties. To address this challenge, this study reports a series of Ni-composited La<sub>2.74</sub>Te<sub>4</sub> materials incorporating uniformly distributed, fine Ni particles generated from NiTe<sub><i>x</i></sub> precursors. These polydisperse nickel particles, with sizes ranging from the nano- to microscale, effectively decouple electrical and thermal transport properties. This decoupling reduces electrical resistivity while simultaneously suppressing the lattice thermal conductivity through phonon scattering, ultimately leading to substantially enhanced thermoelectric performance. As a result, an optimized composite with 13 vol % Ni yielded a record-high thermoelectric figure of merit (<i>zT</i>) of 1.6 at 1073 K, alongside an impressive average <i>zT</i> value of 1.1 across the 600–1100 K range. In addition, these Ni-composited La<sub>2.74</sub>Te<sub>4</sub> materials also demonstrate superior oxygen resistance and enhanced fracture toughness, underscoring their potential as robust, high-performance candidates for high-temperature thermoelectric power generation applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 31","pages":"44699–44707"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoupling the Electrical and Thermal Transport Properties in Ni-Composited La3–xTe4 Thermoelectrics\",\"authors\":\"Yan Cao,&nbsp;Feng Qiao,&nbsp;Jun-Yu Zhu,&nbsp;Qian Liu,&nbsp;Ke-Feng Liu,&nbsp;Tian Zhou,&nbsp;Xu-Feng Hou*,&nbsp;Xiao-Cun Liu and Sheng-Qing Xia*,&nbsp;\",\"doi\":\"10.1021/acsami.5c09942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With excellent high-temperature thermoelectric performance, La<sub>3–<i>x</i></sub>Te<sub>4</sub> materials are considered leading candidates for the next generation of radioisotope thermoelectric generators. Despite this, conventional optimization strategies, such as element doping, have shown only a marginal improvement in their properties. To address this challenge, this study reports a series of Ni-composited La<sub>2.74</sub>Te<sub>4</sub> materials incorporating uniformly distributed, fine Ni particles generated from NiTe<sub><i>x</i></sub> precursors. These polydisperse nickel particles, with sizes ranging from the nano- to microscale, effectively decouple electrical and thermal transport properties. This decoupling reduces electrical resistivity while simultaneously suppressing the lattice thermal conductivity through phonon scattering, ultimately leading to substantially enhanced thermoelectric performance. As a result, an optimized composite with 13 vol % Ni yielded a record-high thermoelectric figure of merit (<i>zT</i>) of 1.6 at 1073 K, alongside an impressive average <i>zT</i> value of 1.1 across the 600–1100 K range. In addition, these Ni-composited La<sub>2.74</sub>Te<sub>4</sub> materials also demonstrate superior oxygen resistance and enhanced fracture toughness, underscoring their potential as robust, high-performance candidates for high-temperature thermoelectric power generation applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 31\",\"pages\":\"44699–44707\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c09942\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c09942","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

La3-xTe4材料具有优异的高温热电性能,被认为是下一代放射性同位素热电发生器的主要候选材料。尽管如此,传统的优化策略,如元素掺杂,只显示出其性能的微小改善。为了解决这一挑战,本研究报告了一系列Ni复合La2.74Te4材料,其中包含由NiTex前驱体产生的均匀分布的细镍颗粒。这些多分散的镍颗粒,尺寸范围从纳米到微米,有效地解耦了电和热输运性质。这种去耦降低了电阻率,同时通过声子散射抑制了晶格导热性,最终大大提高了热电性能。结果,具有13 vol % Ni的优化复合材料在1073 K时产生了创纪录的高热电性能值(zT) 1.6,以及在600-1100 K范围内令人印象深刻的平均zT值1.1。此外,这些ni复合La2.74Te4材料还具有优异的耐氧性和增强的断裂韧性,强调了它们作为高温热电发电应用的坚固、高性能候选材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoupling the Electrical and Thermal Transport Properties in Ni-Composited La3–xTe4 Thermoelectrics

Decoupling the Electrical and Thermal Transport Properties in Ni-Composited La3–xTe4 Thermoelectrics

With excellent high-temperature thermoelectric performance, La3–xTe4 materials are considered leading candidates for the next generation of radioisotope thermoelectric generators. Despite this, conventional optimization strategies, such as element doping, have shown only a marginal improvement in their properties. To address this challenge, this study reports a series of Ni-composited La2.74Te4 materials incorporating uniformly distributed, fine Ni particles generated from NiTex precursors. These polydisperse nickel particles, with sizes ranging from the nano- to microscale, effectively decouple electrical and thermal transport properties. This decoupling reduces electrical resistivity while simultaneously suppressing the lattice thermal conductivity through phonon scattering, ultimately leading to substantially enhanced thermoelectric performance. As a result, an optimized composite with 13 vol % Ni yielded a record-high thermoelectric figure of merit (zT) of 1.6 at 1073 K, alongside an impressive average zT value of 1.1 across the 600–1100 K range. In addition, these Ni-composited La2.74Te4 materials also demonstrate superior oxygen resistance and enhanced fracture toughness, underscoring their potential as robust, high-performance candidates for high-temperature thermoelectric power generation applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信