人工智能大规模释义信息的说服力潜力。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-07-22 eCollection Date: 2025-07-01 DOI:10.1093/pnasnexus/pgaf207
Saloni Dash, Yiwei Xu, Madeline Jalbert, Emma S Spiro
{"title":"人工智能大规模释义信息的说服力潜力。","authors":"Saloni Dash, Yiwei Xu, Madeline Jalbert, Emma S Spiro","doi":"10.1093/pnasnexus/pgaf207","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we study how AI-paraphrased messages have the potential to amplify the persuasive impact and scale of information campaigns. Building from social and cognitive theories on repetition and information processing, we model how <i>CopyPasta</i>-a common repetition tactic leveraged by information campaigns-can be enhanced using large language models. We first extract CopyPasta from two prominent disinformation campaigns in the United States and use ChatGPT to paraphrase the original message to generate <i>AIPasta</i>. We then validate that AIPasta is lexically diverse in comparison to CopyPasta while retaining the semantics of the original message using natural language processing metrics. In a preregistered experiment comparing the persuasive potential of CopyPasta and AIPasta (<i>N</i> = 1,200), we find that AIPasta (but not CopyPasta) is effective at increasing perceptions of consensus in the broad false narrative of the campaign while maintaining similar levels of sharing intent with respect to Control (CopyPasta reduces such intent). Additionally, AIPasta (vs. Control) increases belief in the exact false claim of the campaign, depending on political orientation. However, across most outcomes, we find little evidence of significant persuasive differences between AIPasta and CopyPasta. Nonetheless, current state-of-the-art AI-text detectors fail to detect AIPasta, opening the door for these operations to scale successfully. As AI-enabled information operations become more prominent, we anticipate a shift from traditional CopyPasta to AIPasta, which presents significant challenges for detection and mitigation.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 7","pages":"pgaf207"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281505/pdf/","citationCount":"0","resultStr":"{\"title\":\"The persuasive potential of AI-paraphrased information at scale.\",\"authors\":\"Saloni Dash, Yiwei Xu, Madeline Jalbert, Emma S Spiro\",\"doi\":\"10.1093/pnasnexus/pgaf207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we study how AI-paraphrased messages have the potential to amplify the persuasive impact and scale of information campaigns. Building from social and cognitive theories on repetition and information processing, we model how <i>CopyPasta</i>-a common repetition tactic leveraged by information campaigns-can be enhanced using large language models. We first extract CopyPasta from two prominent disinformation campaigns in the United States and use ChatGPT to paraphrase the original message to generate <i>AIPasta</i>. We then validate that AIPasta is lexically diverse in comparison to CopyPasta while retaining the semantics of the original message using natural language processing metrics. In a preregistered experiment comparing the persuasive potential of CopyPasta and AIPasta (<i>N</i> = 1,200), we find that AIPasta (but not CopyPasta) is effective at increasing perceptions of consensus in the broad false narrative of the campaign while maintaining similar levels of sharing intent with respect to Control (CopyPasta reduces such intent). Additionally, AIPasta (vs. Control) increases belief in the exact false claim of the campaign, depending on political orientation. However, across most outcomes, we find little evidence of significant persuasive differences between AIPasta and CopyPasta. Nonetheless, current state-of-the-art AI-text detectors fail to detect AIPasta, opening the door for these operations to scale successfully. As AI-enabled information operations become more prominent, we anticipate a shift from traditional CopyPasta to AIPasta, which presents significant challenges for detection and mitigation.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 7\",\"pages\":\"pgaf207\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了人工智能解释的信息如何有潜力扩大信息活动的说服力和规模。从重复和信息处理的社会和认知理论出发,我们建立了copypasta(一种被信息运动利用的常见重复策略)如何使用大型语言模型来增强的模型。我们首先从美国两个突出的虚假信息运动中提取CopyPasta,并使用ChatGPT解释原始消息以生成AIPasta。然后,我们验证AIPasta在使用自然语言处理指标保留原始消息的语义的同时,与CopyPasta相比在词法上是多样化的。在一个预先注册的实验中,比较了CopyPasta和AIPasta的说服潜力(N = 1200),我们发现AIPasta(而不是CopyPasta)在广泛的虚假宣传中有效地增加了共识的感知,同时保持了与控制相似的分享意图水平(CopyPasta减少了这种意图)。此外,AIPasta(相对于Control)增加了人们对竞选虚假声明的信任,这取决于政治取向。然而,在大多数结果中,我们发现AIPasta和CopyPasta之间几乎没有显著的说服力差异。尽管如此,目前最先进的人工智能文本检测器无法检测到AIPasta,这为这些操作的成功扩展打开了大门。随着人工智能支持的信息操作变得更加突出,我们预计将从传统的CopyPasta转向AIPasta,这将为检测和缓解带来重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The persuasive potential of AI-paraphrased information at scale.

In this article, we study how AI-paraphrased messages have the potential to amplify the persuasive impact and scale of information campaigns. Building from social and cognitive theories on repetition and information processing, we model how CopyPasta-a common repetition tactic leveraged by information campaigns-can be enhanced using large language models. We first extract CopyPasta from two prominent disinformation campaigns in the United States and use ChatGPT to paraphrase the original message to generate AIPasta. We then validate that AIPasta is lexically diverse in comparison to CopyPasta while retaining the semantics of the original message using natural language processing metrics. In a preregistered experiment comparing the persuasive potential of CopyPasta and AIPasta (N = 1,200), we find that AIPasta (but not CopyPasta) is effective at increasing perceptions of consensus in the broad false narrative of the campaign while maintaining similar levels of sharing intent with respect to Control (CopyPasta reduces such intent). Additionally, AIPasta (vs. Control) increases belief in the exact false claim of the campaign, depending on political orientation. However, across most outcomes, we find little evidence of significant persuasive differences between AIPasta and CopyPasta. Nonetheless, current state-of-the-art AI-text detectors fail to detect AIPasta, opening the door for these operations to scale successfully. As AI-enabled information operations become more prominent, we anticipate a shift from traditional CopyPasta to AIPasta, which presents significant challenges for detection and mitigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信