通过机器学习的多维睡眠概况与痴呆和心血管疾病的风险。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Clémence Cavaillès, Meredith Wallace, Yue Leng, Katie L Stone, Sonia Ancoli-Israel, Kristine Yaffe
{"title":"通过机器学习的多维睡眠概况与痴呆和心血管疾病的风险。","authors":"Clémence Cavaillès, Meredith Wallace, Yue Leng, Katie L Stone, Sonia Ancoli-Israel, Kristine Yaffe","doi":"10.1038/s43856-025-01019-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleep health comprises several dimensions such as sleep duration and fragmentation, circadian activity, and daytime behavior. Yet, most research has focused on individual sleep characteristics. Studies are needed to identify sleep/circadian profiles incorporating multiple dimensions and to assess their associations with adverse health outcomes.</p><p><strong>Methods: </strong>This multicenter population-based cohort study identified 24 h actigraphy-based sleep/circadian profiles in 2667 men aged ≥65 years using an unsupervised machine learning approach and investigated their associations with dementia and cardiovascular disease (CVD) incidence over 12 years.</p><p><strong>Results: </strong>We identify three distinct profiles: active healthy sleepers (AHS; 64.0%), fragmented poor sleepers (FPS; 14.1%), and long and frequent nappers (LFN; 21.9%). Over the follow-up, compared to AHS, FPS exhibit increased risks of dementia and CVD events (HR = 1.35, 95% CI = 1.02-1.78 and HR = 1.32, 95% CI = 1.08-1.60, respectively) after multivariable adjustment, whereas LFN show a marginal association with increased CVD events risk (HR = 1.16, 95% CI = 0.98-1.37) but not with dementia (HR = 1.09, 95%CI = 0.86-1.38).</p><p><strong>Conclusions: </strong>These results highlight potential targets for sleep interventions and the need for more comprehensive screening of poor sleepers for adverse outcomes.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"306"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional sleep profiles via machine learning and risk of dementia and cardiovascular disease.\",\"authors\":\"Clémence Cavaillès, Meredith Wallace, Yue Leng, Katie L Stone, Sonia Ancoli-Israel, Kristine Yaffe\",\"doi\":\"10.1038/s43856-025-01019-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sleep health comprises several dimensions such as sleep duration and fragmentation, circadian activity, and daytime behavior. Yet, most research has focused on individual sleep characteristics. Studies are needed to identify sleep/circadian profiles incorporating multiple dimensions and to assess their associations with adverse health outcomes.</p><p><strong>Methods: </strong>This multicenter population-based cohort study identified 24 h actigraphy-based sleep/circadian profiles in 2667 men aged ≥65 years using an unsupervised machine learning approach and investigated their associations with dementia and cardiovascular disease (CVD) incidence over 12 years.</p><p><strong>Results: </strong>We identify three distinct profiles: active healthy sleepers (AHS; 64.0%), fragmented poor sleepers (FPS; 14.1%), and long and frequent nappers (LFN; 21.9%). Over the follow-up, compared to AHS, FPS exhibit increased risks of dementia and CVD events (HR = 1.35, 95% CI = 1.02-1.78 and HR = 1.32, 95% CI = 1.08-1.60, respectively) after multivariable adjustment, whereas LFN show a marginal association with increased CVD events risk (HR = 1.16, 95% CI = 0.98-1.37) but not with dementia (HR = 1.09, 95%CI = 0.86-1.38).</p><p><strong>Conclusions: </strong>These results highlight potential targets for sleep interventions and the need for more comprehensive screening of poor sleepers for adverse outcomes.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"306\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01019-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01019-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:睡眠健康包括几个方面,如睡眠持续时间和碎片、昼夜节律活动和日间行为。然而,大多数研究都集中在个人睡眠特征上。需要进行研究,以确定包含多个维度的睡眠/昼夜节律概况,并评估其与不良健康结果的关联。方法:这项基于多中心人群的队列研究使用无监督机器学习方法确定了2667名年龄≥65岁的男性24小时基于活动记录仪的睡眠/昼夜节律特征,并调查了其与痴呆和心血管疾病(CVD)发病率在12年内的关系。结果:我们确定了三种不同的特征:活跃健康睡眠者(AHS);64.0%),碎片化睡眠不良者(FPS;14.1%)和长时间和频繁午睡者(LFN;21.9%)。在随访中,与AHS相比,经多变量调整后,FPS表现出痴呆和CVD事件的风险增加(HR = 1.35, 95%CI = 1.02-1.78和HR = 1.32, 95%CI = 1.08-1.60),而LFN与CVD事件风险增加(HR = 1.16, 95%CI = 0.98-1.37)有边际关联(HR = 1.09, 95%CI = 0.86-1.38),但与痴呆无关(HR = 1.09, 95%CI = 0.86-1.38)。结论:这些结果强调了睡眠干预的潜在目标,以及对睡眠不良者的不良后果进行更全面筛查的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional sleep profiles via machine learning and risk of dementia and cardiovascular disease.

Background: Sleep health comprises several dimensions such as sleep duration and fragmentation, circadian activity, and daytime behavior. Yet, most research has focused on individual sleep characteristics. Studies are needed to identify sleep/circadian profiles incorporating multiple dimensions and to assess their associations with adverse health outcomes.

Methods: This multicenter population-based cohort study identified 24 h actigraphy-based sleep/circadian profiles in 2667 men aged ≥65 years using an unsupervised machine learning approach and investigated their associations with dementia and cardiovascular disease (CVD) incidence over 12 years.

Results: We identify three distinct profiles: active healthy sleepers (AHS; 64.0%), fragmented poor sleepers (FPS; 14.1%), and long and frequent nappers (LFN; 21.9%). Over the follow-up, compared to AHS, FPS exhibit increased risks of dementia and CVD events (HR = 1.35, 95% CI = 1.02-1.78 and HR = 1.32, 95% CI = 1.08-1.60, respectively) after multivariable adjustment, whereas LFN show a marginal association with increased CVD events risk (HR = 1.16, 95% CI = 0.98-1.37) but not with dementia (HR = 1.09, 95%CI = 0.86-1.38).

Conclusions: These results highlight potential targets for sleep interventions and the need for more comprehensive screening of poor sleepers for adverse outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信