深度学习放射组学:通过对肿瘤免疫微环境的非侵入性洞察重新定义精确肿瘤学。

IF 2.5 4区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Mesut Tez
{"title":"深度学习放射组学:通过对肿瘤免疫微环境的非侵入性洞察重新定义精确肿瘤学。","authors":"Mesut Tez","doi":"10.4251/wjgo.v17.i7.108175","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography-based deep learning radiomics provides a novel, noninvasive approach to predicting the tumor immune microenvironment in colorectal cancer, revolutionizing precision oncology. The retrospective study by Zhou <i>et al</i> analyzed preoperative computed tomography scans from 315 patients using convolutional neural networks, achieving robust predictive performance (area under the curve: 0.851-0.892) for critical tumor immune microenvironment features, such as tumor-stroma ratio and lymphocyte infiltration, without requiring invasive biopsies. This editorial explores how this technique advances personalized immunotherapy, chemotherapy, and targeted therapies; challenges conventional oncology practices; and paves the way for a future of precision medicine. By integrating advanced imaging with immune profiling, deep learning radiomics redefines colorectal cancer management, highlighting the need to re-evaluate the interplay of technology, biology, and ethics in gastrointestinal oncology.</p>","PeriodicalId":23762,"journal":{"name":"World Journal of Gastrointestinal Oncology","volume":"17 7","pages":"108175"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning radiomics: Redefining precision oncology through noninvasive insights into the tumor immune microenvironment.\",\"authors\":\"Mesut Tez\",\"doi\":\"10.4251/wjgo.v17.i7.108175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computed tomography-based deep learning radiomics provides a novel, noninvasive approach to predicting the tumor immune microenvironment in colorectal cancer, revolutionizing precision oncology. The retrospective study by Zhou <i>et al</i> analyzed preoperative computed tomography scans from 315 patients using convolutional neural networks, achieving robust predictive performance (area under the curve: 0.851-0.892) for critical tumor immune microenvironment features, such as tumor-stroma ratio and lymphocyte infiltration, without requiring invasive biopsies. This editorial explores how this technique advances personalized immunotherapy, chemotherapy, and targeted therapies; challenges conventional oncology practices; and paves the way for a future of precision medicine. By integrating advanced imaging with immune profiling, deep learning radiomics redefines colorectal cancer management, highlighting the need to re-evaluate the interplay of technology, biology, and ethics in gastrointestinal oncology.</p>\",\"PeriodicalId\":23762,\"journal\":{\"name\":\"World Journal of Gastrointestinal Oncology\",\"volume\":\"17 7\",\"pages\":\"108175\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastrointestinal Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4251/wjgo.v17.i7.108175\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4251/wjgo.v17.i7.108175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于计算机断层扫描的深度学习放射组学为预测结直肠癌的肿瘤免疫微环境提供了一种新颖的、无创的方法,彻底改变了精确肿瘤学。Zhou等人的回顾性研究使用卷积神经网络分析了315例患者的术前计算机断层扫描,在不需要侵入性活检的情况下,对肿瘤免疫微环境的关键特征(如肿瘤-基质比和淋巴细胞浸润)实现了强大的预测性能(曲线下面积:0.851-0.892)。这篇社论探讨了这项技术如何推进个性化免疫治疗、化疗和靶向治疗;挑战传统肿瘤学实践;为精准医疗的未来铺平了道路。通过将先进的成像技术与免疫谱分析相结合,深度学习放射组学重新定义了结直肠癌的管理,强调了重新评估胃肠道肿瘤学中技术、生物学和伦理学相互作用的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning radiomics: Redefining precision oncology through noninvasive insights into the tumor immune microenvironment.

Computed tomography-based deep learning radiomics provides a novel, noninvasive approach to predicting the tumor immune microenvironment in colorectal cancer, revolutionizing precision oncology. The retrospective study by Zhou et al analyzed preoperative computed tomography scans from 315 patients using convolutional neural networks, achieving robust predictive performance (area under the curve: 0.851-0.892) for critical tumor immune microenvironment features, such as tumor-stroma ratio and lymphocyte infiltration, without requiring invasive biopsies. This editorial explores how this technique advances personalized immunotherapy, chemotherapy, and targeted therapies; challenges conventional oncology practices; and paves the way for a future of precision medicine. By integrating advanced imaging with immune profiling, deep learning radiomics redefines colorectal cancer management, highlighting the need to re-evaluate the interplay of technology, biology, and ethics in gastrointestinal oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Gastrointestinal Oncology
World Journal of Gastrointestinal Oncology Medicine-Gastroenterology
CiteScore
4.20
自引率
3.30%
发文量
1082
期刊介绍: The World Journal of Gastrointestinal Oncology (WJGO) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of gastrointestinal oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信