预估21世纪加州海流中上层生境的压缩。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ilysa S Iglesias, Jerome Fiechter
{"title":"预估21世纪加州海流中上层生境的压缩。","authors":"Ilysa S Iglesias, Jerome Fiechter","doi":"10.1038/s41598-025-10992-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26626"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284060/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projected 21st century compression of mesopelagic habitat in the California current.\",\"authors\":\"Ilysa S Iglesias, Jerome Fiechter\",\"doi\":\"10.1038/s41598-025-10992-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26626\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284060/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10992-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10992-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然中远洋区占据了世界海洋的很大一部分,但我们的研究结果表明,到本世纪末,可居住的部分可能会垂直压缩~ 40米或~ 39%。利用高排放情景下的三个缩小尺度的气候预估集合,我们评估了人为温室气体排放与深度光和氧变化之间的联系,这些变化影响了加利福尼亚海流中部中上层生境的上限和下限。尽管该模式预测上层光边界有一个小的加深(~ 2 m),这与分层增加和上层海洋生产力降低相一致,但在21世纪期间,垂直中层生境压缩的主要驱动因素是缺氧边界的显着浅化(~ 44 m)。整体成员溶解氧的差异突出了赤道动力学和加利福尼亚暗流在限制美国西海岸中上层栖息地未来可用性方面的潜在影响。中上层生态系统连接表层海洋和深海,中上层栖息地垂直范围的减少可能对更广泛的海洋生态系统过程和碳输出产生级联效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Projected 21st century compression of mesopelagic habitat in the California current.

Projected 21st century compression of mesopelagic habitat in the California current.

Projected 21st century compression of mesopelagic habitat in the California current.

Projected 21st century compression of mesopelagic habitat in the California current.

Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信