{"title":"预估21世纪加州海流中上层生境的压缩。","authors":"Ilysa S Iglesias, Jerome Fiechter","doi":"10.1038/s41598-025-10992-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26626"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284060/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projected 21st century compression of mesopelagic habitat in the California current.\",\"authors\":\"Ilysa S Iglesias, Jerome Fiechter\",\"doi\":\"10.1038/s41598-025-10992-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26626\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284060/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10992-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10992-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Projected 21st century compression of mesopelagic habitat in the California current.
Although the mesopelagic zone occupies a substantial volume of the world's oceans, our results suggest that the livable portion may compress vertically by ~ 40 m or ~ 39% by the end of the century. Using an ensemble of three downscaled climate projections from a high emissions scenario, we evaluated the connection between anthropogenic greenhouse gas emissions and changes in light and oxygen at depth, which influence the upper and lower limits of mesopelagic habitat in the central California Current. Although the model projects a small deepening (~ 2 m) of the upper light boundary consistent with increased stratification and reduced upper ocean productivity, the main driver of vertical mesopelagic habitat compression is the significant shoaling (by ~ 44 m) of the hypoxic boundary over the course of the 21st century. Differences in dissolved oxygen across ensemble members highlight the potential influence of equatorial dynamics and the California Undercurrent in constraining the future availability of mesopelagic habitat along the U.S. west coast. Mesopelagic ecosystems connect the surface ocean to the deep sea, and a projected decrease in the vertical extent of mesopelagic habitat could have cascading effects on a broader range of marine ecosystem processes and carbon export.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.