Hannah F Cahill, Justin M Brown, Manhattan Leslie-Toogood, Jaganathan Venkatesh, Marie-Claire D Wasson, Raj Pranap Arun, Meghan E McLean, Dejan Vidovic, Paola Marcato
{"title":"LncRNA NRAD1通过miRNA的生物发生、定位和主要的非cerna相互作用调节三阴性乳腺癌转录组。","authors":"Hannah F Cahill, Justin M Brown, Manhattan Leslie-Toogood, Jaganathan Venkatesh, Marie-Claire D Wasson, Raj Pranap Arun, Meghan E McLean, Dejan Vidovic, Paola Marcato","doi":"10.1038/s41598-025-12415-7","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a leading cause of cancer mortality in women with triple-negative breast cancer (TNBC) presenting greater treatment challenges due to its aggressive disease progression. Understanding TNBC's unique cell signaling and gene expression profiles will reveal novel therapeutic strategies. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as key regulators of gene expression and potential therapeutic targets. This study focuses on a TNBC-enriched lncRNA, non-coding RNA in the aldehyde dehydrogenase 1A pathway (NRAD1, previously LINC00284), which promotes progression in multiple cancers. Our analysis reveals that NRAD1 is central to miRNA-mRNA networks in TNBC cells, mediating cancer-promoting gene expression changes. Fractionation studies showed that NRAD1 is primarily located in the nucleus and mitochondria, with some cytoplasmic presence allowing for transcript-specific competitive endogenous RNA (ceRNA) interactions with miRNAs. However, NRAD1 primarily effects miRNAs independently of ceRNA activity, instead upregulating DICER (a miRNA biogenesis protein), altering sub-cellular distribution, and reducing biogenesis of mitochondria-localized miRNA (i.e., miR-4485-3p). These findings demonstrate novel regulatory interactions between the cancer-promoting lncRNA NRAD1 and miRNAs that alter gene expression in TNBC, expanding our understanding of regulatory lncRNA-miRNA effects, TNBC biology, and highlighting future therapeutic strategies for targeting non-coding RNAs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26708"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284168/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA NRAD1 regulates the triple-negative breast cancer transcriptome by miRNA biogenesis, localization, and predominately non-ceRNA interactions.\",\"authors\":\"Hannah F Cahill, Justin M Brown, Manhattan Leslie-Toogood, Jaganathan Venkatesh, Marie-Claire D Wasson, Raj Pranap Arun, Meghan E McLean, Dejan Vidovic, Paola Marcato\",\"doi\":\"10.1038/s41598-025-12415-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is a leading cause of cancer mortality in women with triple-negative breast cancer (TNBC) presenting greater treatment challenges due to its aggressive disease progression. Understanding TNBC's unique cell signaling and gene expression profiles will reveal novel therapeutic strategies. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as key regulators of gene expression and potential therapeutic targets. This study focuses on a TNBC-enriched lncRNA, non-coding RNA in the aldehyde dehydrogenase 1A pathway (NRAD1, previously LINC00284), which promotes progression in multiple cancers. Our analysis reveals that NRAD1 is central to miRNA-mRNA networks in TNBC cells, mediating cancer-promoting gene expression changes. Fractionation studies showed that NRAD1 is primarily located in the nucleus and mitochondria, with some cytoplasmic presence allowing for transcript-specific competitive endogenous RNA (ceRNA) interactions with miRNAs. However, NRAD1 primarily effects miRNAs independently of ceRNA activity, instead upregulating DICER (a miRNA biogenesis protein), altering sub-cellular distribution, and reducing biogenesis of mitochondria-localized miRNA (i.e., miR-4485-3p). These findings demonstrate novel regulatory interactions between the cancer-promoting lncRNA NRAD1 and miRNAs that alter gene expression in TNBC, expanding our understanding of regulatory lncRNA-miRNA effects, TNBC biology, and highlighting future therapeutic strategies for targeting non-coding RNAs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26708\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284168/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12415-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12415-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
LncRNA NRAD1 regulates the triple-negative breast cancer transcriptome by miRNA biogenesis, localization, and predominately non-ceRNA interactions.
Breast cancer is a leading cause of cancer mortality in women with triple-negative breast cancer (TNBC) presenting greater treatment challenges due to its aggressive disease progression. Understanding TNBC's unique cell signaling and gene expression profiles will reveal novel therapeutic strategies. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as key regulators of gene expression and potential therapeutic targets. This study focuses on a TNBC-enriched lncRNA, non-coding RNA in the aldehyde dehydrogenase 1A pathway (NRAD1, previously LINC00284), which promotes progression in multiple cancers. Our analysis reveals that NRAD1 is central to miRNA-mRNA networks in TNBC cells, mediating cancer-promoting gene expression changes. Fractionation studies showed that NRAD1 is primarily located in the nucleus and mitochondria, with some cytoplasmic presence allowing for transcript-specific competitive endogenous RNA (ceRNA) interactions with miRNAs. However, NRAD1 primarily effects miRNAs independently of ceRNA activity, instead upregulating DICER (a miRNA biogenesis protein), altering sub-cellular distribution, and reducing biogenesis of mitochondria-localized miRNA (i.e., miR-4485-3p). These findings demonstrate novel regulatory interactions between the cancer-promoting lncRNA NRAD1 and miRNAs that alter gene expression in TNBC, expanding our understanding of regulatory lncRNA-miRNA effects, TNBC biology, and highlighting future therapeutic strategies for targeting non-coding RNAs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.