Morteza Farhid, Mohammad Reza Ghavidel Aghdam, Moharram Shameli
{"title":"基于神经网络的冷气体推进系统推力预测方法。","authors":"Morteza Farhid, Mohammad Reza Ghavidel Aghdam, Moharram Shameli","doi":"10.1038/s41598-025-12705-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a machine learning method to accurately predict thrust in a cold gas thruster using a feedforward neural network (FFNN). The model leverages critical operational parameters, such as storage pressure, mass flow rate, nozzle length, exit pressure, and propellant mass density, to achieve high precision in thrust predictions. To make this technology accessible and practical, we introduce an intuitive graphical user interface (GUI) that allows users to estimate thrust in real-time systems. This tool simplifies design and analysis processes, offering engineers a powerful resource for optimizing the performance of the cold gas thrusters. Based on the simulation results, our proposed method achieves an accuracy of 0.98 and an F1 score of 0.981, showcasing its robustness and generalizability across various test cases. Our work highlights how machine learning methods can be effectively integrated into propulsion system development, paving the way for more innovative, more efficient designs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26673"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284182/pdf/","citationCount":"0","resultStr":"{\"title\":\"A neural network based approach for thrust prediction in cold gas propulsion systems.\",\"authors\":\"Morteza Farhid, Mohammad Reza Ghavidel Aghdam, Moharram Shameli\",\"doi\":\"10.1038/s41598-025-12705-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we present a machine learning method to accurately predict thrust in a cold gas thruster using a feedforward neural network (FFNN). The model leverages critical operational parameters, such as storage pressure, mass flow rate, nozzle length, exit pressure, and propellant mass density, to achieve high precision in thrust predictions. To make this technology accessible and practical, we introduce an intuitive graphical user interface (GUI) that allows users to estimate thrust in real-time systems. This tool simplifies design and analysis processes, offering engineers a powerful resource for optimizing the performance of the cold gas thrusters. Based on the simulation results, our proposed method achieves an accuracy of 0.98 and an F1 score of 0.981, showcasing its robustness and generalizability across various test cases. Our work highlights how machine learning methods can be effectively integrated into propulsion system development, paving the way for more innovative, more efficient designs.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26673\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12705-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12705-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A neural network based approach for thrust prediction in cold gas propulsion systems.
In this paper, we present a machine learning method to accurately predict thrust in a cold gas thruster using a feedforward neural network (FFNN). The model leverages critical operational parameters, such as storage pressure, mass flow rate, nozzle length, exit pressure, and propellant mass density, to achieve high precision in thrust predictions. To make this technology accessible and practical, we introduce an intuitive graphical user interface (GUI) that allows users to estimate thrust in real-time systems. This tool simplifies design and analysis processes, offering engineers a powerful resource for optimizing the performance of the cold gas thrusters. Based on the simulation results, our proposed method achieves an accuracy of 0.98 and an F1 score of 0.981, showcasing its robustness and generalizability across various test cases. Our work highlights how machine learning methods can be effectively integrated into propulsion system development, paving the way for more innovative, more efficient designs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.