Jane Frederick, Ranya K A Virk, I Chae Ye, Luay M Almassalha, Greta M Wodarcyk, David VanDerway, Ruyi Gong, Cody L Dunton, Tiffany Kuo, Karla I Medina, Margarita Loxas, Jared T Ahrendsen, Demirkan B Gursel, Paola Carrillo Gonzalez, Rikkert J Nap, Saira John, Vasundhara Agrawal, Nicholas M Anthony, John Carinato, Wing Shun Li, Rivaan Kakkaramadam, Surbhi Jain, Shohreh Shahabi, Guillermo A Ameer, Igal G Szleifer, Vadim Backman
{"title":"利用染色质包装结构域在体内靶向化学逃避。","authors":"Jane Frederick, Ranya K A Virk, I Chae Ye, Luay M Almassalha, Greta M Wodarcyk, David VanDerway, Ruyi Gong, Cody L Dunton, Tiffany Kuo, Karla I Medina, Margarita Loxas, Jared T Ahrendsen, Demirkan B Gursel, Paola Carrillo Gonzalez, Rikkert J Nap, Saira John, Vasundhara Agrawal, Nicholas M Anthony, John Carinato, Wing Shun Li, Rivaan Kakkaramadam, Surbhi Jain, Shohreh Shahabi, Guillermo A Ameer, Igal G Szleifer, Vadim Backman","doi":"10.1073/pnas.2425319122","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells exhibit a remarkable resilience to cytotoxic stress, often adapting through transcriptional changes linked to alterations in chromatin structure. In several types of cancer, these adaptations involve epigenetic modifications and restructuring of topologically associating domains. However, the underlying principles by which chromatin architecture facilitates such adaptability across different cancers remain poorly understood. To investigate the role of chromatin in this process, we developed a physics-based model that connects chromatin organization to cell fate decisions, such as survival following chemotherapy. Our model builds on the observation that chromatin forms packing domains, which influence transcriptional activity through macromolecular crowding. The model accurately predicts chemoevasion in vitro, suggesting that changes in packing domains affect the likelihood of survival. Consistent results across diverse cancer types indicate that the model captures fundamental principles of chromatin-mediated adaptation, independent of the specific cancer or chemotherapy mechanisms involved. Based on these insights, we hypothesized that compounds capable of modulating packing domains, termed Transcriptional Plasticity Regulators (TPRs), could prevent cellular adaptation to chemotherapy. We conducted a proof-of-concept compound screen using live-cell chromatin imaging to identify several TPRs that synergistically enhanced chemotherapy-induced cell death. The most effective TPR significantly improved therapeutic outcomes in a patient-derived xenograft model of ovarian cancer. These findings underscore the central role of chromatin in cellular adaptation to cytotoxic stress and present a framework for enhancing cancer therapies, with broad potential across multiple cancer types.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 30","pages":"e2425319122"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging chromatin packing domains to target chemoevasion in vivo.\",\"authors\":\"Jane Frederick, Ranya K A Virk, I Chae Ye, Luay M Almassalha, Greta M Wodarcyk, David VanDerway, Ruyi Gong, Cody L Dunton, Tiffany Kuo, Karla I Medina, Margarita Loxas, Jared T Ahrendsen, Demirkan B Gursel, Paola Carrillo Gonzalez, Rikkert J Nap, Saira John, Vasundhara Agrawal, Nicholas M Anthony, John Carinato, Wing Shun Li, Rivaan Kakkaramadam, Surbhi Jain, Shohreh Shahabi, Guillermo A Ameer, Igal G Szleifer, Vadim Backman\",\"doi\":\"10.1073/pnas.2425319122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer cells exhibit a remarkable resilience to cytotoxic stress, often adapting through transcriptional changes linked to alterations in chromatin structure. In several types of cancer, these adaptations involve epigenetic modifications and restructuring of topologically associating domains. However, the underlying principles by which chromatin architecture facilitates such adaptability across different cancers remain poorly understood. To investigate the role of chromatin in this process, we developed a physics-based model that connects chromatin organization to cell fate decisions, such as survival following chemotherapy. Our model builds on the observation that chromatin forms packing domains, which influence transcriptional activity through macromolecular crowding. The model accurately predicts chemoevasion in vitro, suggesting that changes in packing domains affect the likelihood of survival. Consistent results across diverse cancer types indicate that the model captures fundamental principles of chromatin-mediated adaptation, independent of the specific cancer or chemotherapy mechanisms involved. Based on these insights, we hypothesized that compounds capable of modulating packing domains, termed Transcriptional Plasticity Regulators (TPRs), could prevent cellular adaptation to chemotherapy. We conducted a proof-of-concept compound screen using live-cell chromatin imaging to identify several TPRs that synergistically enhanced chemotherapy-induced cell death. The most effective TPR significantly improved therapeutic outcomes in a patient-derived xenograft model of ovarian cancer. These findings underscore the central role of chromatin in cellular adaptation to cytotoxic stress and present a framework for enhancing cancer therapies, with broad potential across multiple cancer types.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 30\",\"pages\":\"e2425319122\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2425319122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2425319122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Leveraging chromatin packing domains to target chemoevasion in vivo.
Cancer cells exhibit a remarkable resilience to cytotoxic stress, often adapting through transcriptional changes linked to alterations in chromatin structure. In several types of cancer, these adaptations involve epigenetic modifications and restructuring of topologically associating domains. However, the underlying principles by which chromatin architecture facilitates such adaptability across different cancers remain poorly understood. To investigate the role of chromatin in this process, we developed a physics-based model that connects chromatin organization to cell fate decisions, such as survival following chemotherapy. Our model builds on the observation that chromatin forms packing domains, which influence transcriptional activity through macromolecular crowding. The model accurately predicts chemoevasion in vitro, suggesting that changes in packing domains affect the likelihood of survival. Consistent results across diverse cancer types indicate that the model captures fundamental principles of chromatin-mediated adaptation, independent of the specific cancer or chemotherapy mechanisms involved. Based on these insights, we hypothesized that compounds capable of modulating packing domains, termed Transcriptional Plasticity Regulators (TPRs), could prevent cellular adaptation to chemotherapy. We conducted a proof-of-concept compound screen using live-cell chromatin imaging to identify several TPRs that synergistically enhanced chemotherapy-induced cell death. The most effective TPR significantly improved therapeutic outcomes in a patient-derived xenograft model of ovarian cancer. These findings underscore the central role of chromatin in cellular adaptation to cytotoxic stress and present a framework for enhancing cancer therapies, with broad potential across multiple cancer types.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.