前脑组装体支持快速尖峰的人类PVALB+皮层中间神经元的发育,并揭示精神分裂症相关缺陷。

IF 15 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2025-10-01 Epub Date: 2025-07-21 DOI:10.1016/j.neuron.2025.06.017
Ryan M Walsh, Gregg W Crabtree, Kriti Kalpana, Luz Jubierre, So Yeon Koo, Gabriele Ciceri, Joseph A Gogos, Ilya Kruglikov, Lorenz Studer
{"title":"前脑组装体支持快速尖峰的人类PVALB+皮层中间神经元的发育,并揭示精神分裂症相关缺陷。","authors":"Ryan M Walsh, Gregg W Crabtree, Kriti Kalpana, Luz Jubierre, So Yeon Koo, Gabriele Ciceri, Joseph A Gogos, Ilya Kruglikov, Lorenz Studer","doi":"10.1016/j.neuron.2025.06.017","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during development remains poorly understood. The protracted, postnatal maturation of PVALB+ cortical interneurons has complicated human pluripotent stem cell (hPSC)-based models for studying their role in neuropsychiatric disease. Here, we present a forebrain assembloid system yielding PVALB+ cortical interneurons that match the molecular identity and distinctive electrophysiology of primary PVALB+ interneurons. We further established a series of isogenic hPSC lines carrying structural variants associated with schizophrenia and identified variant-specific phenotypes affecting cortical interneuron migration, the molecular profile of PVALB+ cortical interneurons, and their ability to regulate cortical network activity, including γ-band oscillations. These findings offer plausible mechanisms for how the disruption of cortical interneuron development may impact schizophrenia risk and provide a human experimental platform to study PVALB+ cortical interneurons in health and disease.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"3185-3203.e7"},"PeriodicalIF":15.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forebrain assembloids support the development of fast-spiking human PVALB+ cortical interneurons and uncover schizophrenia-associated defects.\",\"authors\":\"Ryan M Walsh, Gregg W Crabtree, Kriti Kalpana, Luz Jubierre, So Yeon Koo, Gabriele Ciceri, Joseph A Gogos, Ilya Kruglikov, Lorenz Studer\",\"doi\":\"10.1016/j.neuron.2025.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during development remains poorly understood. The protracted, postnatal maturation of PVALB+ cortical interneurons has complicated human pluripotent stem cell (hPSC)-based models for studying their role in neuropsychiatric disease. Here, we present a forebrain assembloid system yielding PVALB+ cortical interneurons that match the molecular identity and distinctive electrophysiology of primary PVALB+ interneurons. We further established a series of isogenic hPSC lines carrying structural variants associated with schizophrenia and identified variant-specific phenotypes affecting cortical interneuron migration, the molecular profile of PVALB+ cortical interneurons, and their ability to regulate cortical network activity, including γ-band oscillations. These findings offer plausible mechanisms for how the disruption of cortical interneuron development may impact schizophrenia risk and provide a human experimental platform to study PVALB+ cortical interneurons in health and disease.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"3185-3203.e7\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.06.017\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.06.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小白蛋白阳性(PVALB+)皮层中间神经元的破坏与精神分裂症的发病机制有关。然而,这些缺陷是如何在开发过程中出现的,人们仍然知之甚少。PVALB+皮质中间神经元在出生后的长期成熟使基于人类多能干细胞(hPSC)的模型复杂化,以研究它们在神经精神疾病中的作用。在这里,我们提出了一个产生PVALB+皮层中间神经元的前脑组装体系统,该系统与初级PVALB+中间神经元的分子身份和独特的电生理相匹配。我们进一步建立了一系列携带与精神分裂症相关结构变异的等基因hPSC系,并鉴定了影响皮质中间神经元迁移的变异特异性表型、PVALB+皮质中间神经元的分子谱,以及它们调节皮质网络活动(包括γ波段振荡)的能力。这些发现为皮层中间神经元发育中断如何影响精神分裂症风险提供了合理的机制,并为研究PVALB+皮层中间神经元在健康和疾病中的作用提供了一个人类实验平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forebrain assembloids support the development of fast-spiking human PVALB+ cortical interneurons and uncover schizophrenia-associated defects.

Disruption of parvalbumin positive (PVALB+) cortical interneurons is implicated in the pathogenesis of schizophrenia. However, how these defects emerge during development remains poorly understood. The protracted, postnatal maturation of PVALB+ cortical interneurons has complicated human pluripotent stem cell (hPSC)-based models for studying their role in neuropsychiatric disease. Here, we present a forebrain assembloid system yielding PVALB+ cortical interneurons that match the molecular identity and distinctive electrophysiology of primary PVALB+ interneurons. We further established a series of isogenic hPSC lines carrying structural variants associated with schizophrenia and identified variant-specific phenotypes affecting cortical interneuron migration, the molecular profile of PVALB+ cortical interneurons, and their ability to regulate cortical network activity, including γ-band oscillations. These findings offer plausible mechanisms for how the disruption of cortical interneuron development may impact schizophrenia risk and provide a human experimental platform to study PVALB+ cortical interneurons in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信