Alyssa K Tidwell, Evelyn Faust, Carrie A Eckert, Adam M Guss, William G Alexander
{"title":"用MIJAMP在细菌纳米孔测序数据中发现甲基化DNA基序。","authors":"Alyssa K Tidwell, Evelyn Faust, Carrie A Eckert, Adam M Guss, William G Alexander","doi":"10.1093/jimb/kuaf022","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial DNA methylation is involved in diverse cellular functions, including modulation of gene expression, DNA repair, and restriction-modification systems for defense against viruses and other foreign DNA. Restriction systems hinder efforts to engineer organisms to produce fuels and chemicals from waste and renewable feedstocks by degrading DNA during transformation. Methylome analysis allows identification of motifs within a bacterial chromosome that may be targeted by native restriction enzymes. Further expression of the corresponding methyltransferases in Escherichia coli allows plasmid DNA to be protected from restriction in the target organism, thereby drastically enhancing transformation efficiency. Nanopore sequencing can detect methylated bases, but software is needed to transform modified base coordinates into methylated motifs. Here, we develop MIJAMP (MIJAMP Is Just A MethylBED Parser), a software package that was developed to discover methylated motifs from the output of ONT's Modkit or other data in the methylBED format. MIJAMP employs a human-driven refinement strategy that empirically validates all motifs against genome-wide methylation data, thus eliminating incorrect motifs. MIJAMP also reports methylation data on specific, user-defined motifs. Using MIJAMP, we determined the methylated motifs both in a control strain (wild-type E. coli) and in Synecococcus sp. strain PCC7002, laying the foundation for improved transformation in this organism. MIJAMP is available at https://code.ornl.gov/alexander-public/mijamp/. One Sentence Summary: Here we describe software written to discover DNA methylation motifs from nanopore sequencing data.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320774/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering methylated DNA motifs in bacterial nanopore sequencing data with MIJAMP.\",\"authors\":\"Alyssa K Tidwell, Evelyn Faust, Carrie A Eckert, Adam M Guss, William G Alexander\",\"doi\":\"10.1093/jimb/kuaf022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial DNA methylation is involved in diverse cellular functions, including modulation of gene expression, DNA repair, and restriction-modification systems for defense against viruses and other foreign DNA. Restriction systems hinder efforts to engineer organisms to produce fuels and chemicals from waste and renewable feedstocks by degrading DNA during transformation. Methylome analysis allows identification of motifs within a bacterial chromosome that may be targeted by native restriction enzymes. Further expression of the corresponding methyltransferases in Escherichia coli allows plasmid DNA to be protected from restriction in the target organism, thereby drastically enhancing transformation efficiency. Nanopore sequencing can detect methylated bases, but software is needed to transform modified base coordinates into methylated motifs. Here, we develop MIJAMP (MIJAMP Is Just A MethylBED Parser), a software package that was developed to discover methylated motifs from the output of ONT's Modkit or other data in the methylBED format. MIJAMP employs a human-driven refinement strategy that empirically validates all motifs against genome-wide methylation data, thus eliminating incorrect motifs. MIJAMP also reports methylation data on specific, user-defined motifs. Using MIJAMP, we determined the methylated motifs both in a control strain (wild-type E. coli) and in Synecococcus sp. strain PCC7002, laying the foundation for improved transformation in this organism. MIJAMP is available at https://code.ornl.gov/alexander-public/mijamp/. One Sentence Summary: Here we describe software written to discover DNA methylation motifs from nanopore sequencing data.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320774/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuaf022\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf022","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Discovering methylated DNA motifs in bacterial nanopore sequencing data with MIJAMP.
Bacterial DNA methylation is involved in diverse cellular functions, including modulation of gene expression, DNA repair, and restriction-modification systems for defense against viruses and other foreign DNA. Restriction systems hinder efforts to engineer organisms to produce fuels and chemicals from waste and renewable feedstocks by degrading DNA during transformation. Methylome analysis allows identification of motifs within a bacterial chromosome that may be targeted by native restriction enzymes. Further expression of the corresponding methyltransferases in Escherichia coli allows plasmid DNA to be protected from restriction in the target organism, thereby drastically enhancing transformation efficiency. Nanopore sequencing can detect methylated bases, but software is needed to transform modified base coordinates into methylated motifs. Here, we develop MIJAMP (MIJAMP Is Just A MethylBED Parser), a software package that was developed to discover methylated motifs from the output of ONT's Modkit or other data in the methylBED format. MIJAMP employs a human-driven refinement strategy that empirically validates all motifs against genome-wide methylation data, thus eliminating incorrect motifs. MIJAMP also reports methylation data on specific, user-defined motifs. Using MIJAMP, we determined the methylated motifs both in a control strain (wild-type E. coli) and in Synecococcus sp. strain PCC7002, laying the foundation for improved transformation in this organism. MIJAMP is available at https://code.ornl.gov/alexander-public/mijamp/. One Sentence Summary: Here we describe software written to discover DNA methylation motifs from nanopore sequencing data.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology