替代“无效果”测试的统计质量混淆。

IF 6.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-08-04 Epub Date: 2025-07-23 DOI:10.1083/jcb.202403034
Josh L Morgan
{"title":"替代“无效果”测试的统计质量混淆。","authors":"Josh L Morgan","doi":"10.1083/jcb.202403034","DOIUrl":null,"url":null,"abstract":"<p><p>In cell biology, statistical analysis means testing the hypothesis that there was no effect. This weak form of hypothesis testing neglects effect size, is universally misinterpreted, and is disastrously prone to error when combined with high-throughput cell biology. The solution is for analysis of measurements to start and end with an interpretation of effect size. In this manuscript, I walk through some of the common critiques of significance testing and how they relate to experimental cell biology. I argue that careful consideration of effect size should be returned to its central position in the planning and discussion of cell biological research. To facilitate this shift in focus, I recommend replacing P values with confidence intervals as cell biology's default statistical analysis.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 8","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alternative to the statistical mass confusion of testing for \\\"no effect\\\".\",\"authors\":\"Josh L Morgan\",\"doi\":\"10.1083/jcb.202403034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cell biology, statistical analysis means testing the hypothesis that there was no effect. This weak form of hypothesis testing neglects effect size, is universally misinterpreted, and is disastrously prone to error when combined with high-throughput cell biology. The solution is for analysis of measurements to start and end with an interpretation of effect size. In this manuscript, I walk through some of the common critiques of significance testing and how they relate to experimental cell biology. I argue that careful consideration of effect size should be returned to its central position in the planning and discussion of cell biological research. To facilitate this shift in focus, I recommend replacing P values with confidence intervals as cell biology's default statistical analysis.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"224 8\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202403034\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202403034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在细胞生物学中,统计分析意味着检验没有影响的假设。这种弱形式的假设检验忽略了效应大小,普遍被误解,并且在与高通量细胞生物学结合时容易出现灾难性的错误。解决方案是对测量进行分析,以解释效应大小开始和结束。在这篇手稿中,我简要介绍了一些对显著性检验的常见批评,以及它们与实验细胞生物学的关系。我认为,在细胞生物学研究的规划和讨论中,应该把对效应大小的仔细考虑放回到它的中心位置。为了促进焦点的转移,我建议用置信区间代替P值作为细胞生物学的默认统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative to the statistical mass confusion of testing for "no effect".

In cell biology, statistical analysis means testing the hypothesis that there was no effect. This weak form of hypothesis testing neglects effect size, is universally misinterpreted, and is disastrously prone to error when combined with high-throughput cell biology. The solution is for analysis of measurements to start and end with an interpretation of effect size. In this manuscript, I walk through some of the common critiques of significance testing and how they relate to experimental cell biology. I argue that careful consideration of effect size should be returned to its central position in the planning and discussion of cell biological research. To facilitate this shift in focus, I recommend replacing P values with confidence intervals as cell biology's default statistical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信