Aixue Zou, Yuxuan Sun, Weiwei Dong, Jinjing Lu, Zhiyong Yang
{"title":"固醇调控元件结合蛋白在动脉粥样硬化中的作用研究进展。","authors":"Aixue Zou, Yuxuan Sun, Weiwei Dong, Jinjing Lu, Zhiyong Yang","doi":"10.1007/s11883-025-01317-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Atherosclerotic cardiovascular disease (ASCVD), influenced by elevated plasma low-density lipoprotein (LDL) and cholesterol levels, is important to various acute cardiovascular and cerebrovascular diseases, causing life-threatening deaths worldwide. Early intervention for atherosclerosis is both essential and beneficial. As members of a class of transcription factors, sterol regulatory element-binding proteins (SREBPs) regulate the expression of most genes involved in lipid metabolism. This review aimed to present three aspects of SREBP regulation in the Endoplasmic Reticulum (ER), Golgi apparatus, and nucleus after maturation. Different subcellular localizations play integral roles in regulating the maturation and activity of SREBPs. Moreover, several drugs that target SREBPs for the treatment of atherosclerosis are described, with the aim of exploring SREBPs as new targets for treating atherosclerosis.</p><p><strong>Recent findings: </strong>There are three members of the SREBP family, namely, SREBP-1a, SREBP-1c, and SREBP-2, all of which have differing functions. SREBP-1a and SREBP-1c regulate the synthesis of fatty acids, while SREBP-2 regulates cholesterol metabolism. SREBPs combine with the SREBP Cleavage-Activating Protein (SCAPs) to form the SCAP/SREBP complex. This complex can bind to and is regulated by insulin-induced genes (INSIG), affecting endoplasmic reticulum (ER)-to-Golgi translocation. SREBPs are sheared by 1-site protease (S1P) and 2-site protease (S2P) in a regular sequence on arrival at the Golgi apparatus, and are processed, matured, and transported to the nucleus for action. The review focuses on how SREBPs, crucial regulators of cholesterol and fatty acid metabolism, are controlled at different cellular locations (ER, Golgi, Nucleus), and explores their potential as drug targets for treating atherosclerosis, a major global health threat driven by high LDL cholesterol.</p>","PeriodicalId":10875,"journal":{"name":"Current Atherosclerosis Reports","volume":"27 1","pages":"74"},"PeriodicalIF":5.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress of Sterol Regulatory Element-binding Proteins Role in Atherosclerosis.\",\"authors\":\"Aixue Zou, Yuxuan Sun, Weiwei Dong, Jinjing Lu, Zhiyong Yang\",\"doi\":\"10.1007/s11883-025-01317-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Atherosclerotic cardiovascular disease (ASCVD), influenced by elevated plasma low-density lipoprotein (LDL) and cholesterol levels, is important to various acute cardiovascular and cerebrovascular diseases, causing life-threatening deaths worldwide. Early intervention for atherosclerosis is both essential and beneficial. As members of a class of transcription factors, sterol regulatory element-binding proteins (SREBPs) regulate the expression of most genes involved in lipid metabolism. This review aimed to present three aspects of SREBP regulation in the Endoplasmic Reticulum (ER), Golgi apparatus, and nucleus after maturation. Different subcellular localizations play integral roles in regulating the maturation and activity of SREBPs. Moreover, several drugs that target SREBPs for the treatment of atherosclerosis are described, with the aim of exploring SREBPs as new targets for treating atherosclerosis.</p><p><strong>Recent findings: </strong>There are three members of the SREBP family, namely, SREBP-1a, SREBP-1c, and SREBP-2, all of which have differing functions. SREBP-1a and SREBP-1c regulate the synthesis of fatty acids, while SREBP-2 regulates cholesterol metabolism. SREBPs combine with the SREBP Cleavage-Activating Protein (SCAPs) to form the SCAP/SREBP complex. This complex can bind to and is regulated by insulin-induced genes (INSIG), affecting endoplasmic reticulum (ER)-to-Golgi translocation. SREBPs are sheared by 1-site protease (S1P) and 2-site protease (S2P) in a regular sequence on arrival at the Golgi apparatus, and are processed, matured, and transported to the nucleus for action. The review focuses on how SREBPs, crucial regulators of cholesterol and fatty acid metabolism, are controlled at different cellular locations (ER, Golgi, Nucleus), and explores their potential as drug targets for treating atherosclerosis, a major global health threat driven by high LDL cholesterol.</p>\",\"PeriodicalId\":10875,\"journal\":{\"name\":\"Current Atherosclerosis Reports\",\"volume\":\"27 1\",\"pages\":\"74\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Atherosclerosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11883-025-01317-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Atherosclerosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11883-025-01317-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Recent Progress of Sterol Regulatory Element-binding Proteins Role in Atherosclerosis.
Purpose of review: Atherosclerotic cardiovascular disease (ASCVD), influenced by elevated plasma low-density lipoprotein (LDL) and cholesterol levels, is important to various acute cardiovascular and cerebrovascular diseases, causing life-threatening deaths worldwide. Early intervention for atherosclerosis is both essential and beneficial. As members of a class of transcription factors, sterol regulatory element-binding proteins (SREBPs) regulate the expression of most genes involved in lipid metabolism. This review aimed to present three aspects of SREBP regulation in the Endoplasmic Reticulum (ER), Golgi apparatus, and nucleus after maturation. Different subcellular localizations play integral roles in regulating the maturation and activity of SREBPs. Moreover, several drugs that target SREBPs for the treatment of atherosclerosis are described, with the aim of exploring SREBPs as new targets for treating atherosclerosis.
Recent findings: There are three members of the SREBP family, namely, SREBP-1a, SREBP-1c, and SREBP-2, all of which have differing functions. SREBP-1a and SREBP-1c regulate the synthesis of fatty acids, while SREBP-2 regulates cholesterol metabolism. SREBPs combine with the SREBP Cleavage-Activating Protein (SCAPs) to form the SCAP/SREBP complex. This complex can bind to and is regulated by insulin-induced genes (INSIG), affecting endoplasmic reticulum (ER)-to-Golgi translocation. SREBPs are sheared by 1-site protease (S1P) and 2-site protease (S2P) in a regular sequence on arrival at the Golgi apparatus, and are processed, matured, and transported to the nucleus for action. The review focuses on how SREBPs, crucial regulators of cholesterol and fatty acid metabolism, are controlled at different cellular locations (ER, Golgi, Nucleus), and explores their potential as drug targets for treating atherosclerosis, a major global health threat driven by high LDL cholesterol.
期刊介绍:
The aim of this journal is to systematically provide expert views on current basic science and clinical advances in the field of atherosclerosis and highlight the most important developments likely to transform the field of cardiovascular prevention, diagnosis, and treatment.
We accomplish this aim by appointing major authorities to serve as Section Editors who select leading experts from around the world to provide definitive reviews on key topics and papers published in the past year. We also provide supplementary reviews and commentaries from well-known figures in the field. An Editorial Board of internationally diverse members suggests topics of special interest to their country/region and ensures that topics are current and include emerging research.