动态不稳定性在QT间期变异性和早期后去极化倾向中的作用。

IF 3.1 3区 生物学 Q2 BIOPHYSICS
Daisuke Sato, Bence Hegyi, Crystal M Ripplinger, Donald M Bers
{"title":"动态不稳定性在QT间期变异性和早期后去极化倾向中的作用。","authors":"Daisuke Sato, Bence Hegyi, Crystal M Ripplinger, Donald M Bers","doi":"10.1016/j.bpj.2025.07.017","DOIUrl":null,"url":null,"abstract":"<p><p>Beat-to-beat variability of the QT interval (QTV) is a well-established marker of cardiac health, with increased QTV (> 5 ms) often associated with a higher risk of arrhythmias. However, the underlying mechanisms contributing to this phenomenon remain poorly understood. Recently, we showed that cardiac instability is a major cause of QTV. Early afterdepolarizations (EADs) are abnormal electrical oscillations that occur during the plateau phase of the cardiac action potential (AP), often arising when the membrane potential becomes unstable. In this study, we use a physiologically detailed computational model of rabbit ventricular myocytes with stochastic ion channel gating to investigate the relationship between QTV and EAD propensity. We found that increased AP duration (APD) variability, which serves as a surrogate for QTV on the ECG at the single-cell level, can arise even in the absence of apparent EADs, driven by intrinsic dynamical instability. As the cellular state approaches the threshold for EAD generation, small perturbations in membrane voltage are amplified, leading to increased APD variability. The phase-plane analysis in the voltage-calcium channel inactivation space demonstrates that proximity to the EAD-generating basin of attraction strongly influences repolarization variability, establishing a mechanistic link between QTV and EAD propensity. Furthermore, we observed that QTV increases at longer pacing cycle lengths (PCLs), distinguishing it from alternans-associated APD variability, which increases at shorter PCLs. These findings suggest that increased QTV may serve as an early indicator of arrhythmic risk before the manifestation of EADs, potentially offering a critical window for preventive intervention. Our results provide novel insights into the fundamental mechanisms underlying QTV and its potential role in arrhythmia prediction.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Dynamical Instability in QT Interval Variability and Early Afterdepolarization Propensity.\",\"authors\":\"Daisuke Sato, Bence Hegyi, Crystal M Ripplinger, Donald M Bers\",\"doi\":\"10.1016/j.bpj.2025.07.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beat-to-beat variability of the QT interval (QTV) is a well-established marker of cardiac health, with increased QTV (> 5 ms) often associated with a higher risk of arrhythmias. However, the underlying mechanisms contributing to this phenomenon remain poorly understood. Recently, we showed that cardiac instability is a major cause of QTV. Early afterdepolarizations (EADs) are abnormal electrical oscillations that occur during the plateau phase of the cardiac action potential (AP), often arising when the membrane potential becomes unstable. In this study, we use a physiologically detailed computational model of rabbit ventricular myocytes with stochastic ion channel gating to investigate the relationship between QTV and EAD propensity. We found that increased AP duration (APD) variability, which serves as a surrogate for QTV on the ECG at the single-cell level, can arise even in the absence of apparent EADs, driven by intrinsic dynamical instability. As the cellular state approaches the threshold for EAD generation, small perturbations in membrane voltage are amplified, leading to increased APD variability. The phase-plane analysis in the voltage-calcium channel inactivation space demonstrates that proximity to the EAD-generating basin of attraction strongly influences repolarization variability, establishing a mechanistic link between QTV and EAD propensity. Furthermore, we observed that QTV increases at longer pacing cycle lengths (PCLs), distinguishing it from alternans-associated APD variability, which increases at shorter PCLs. These findings suggest that increased QTV may serve as an early indicator of arrhythmic risk before the manifestation of EADs, potentially offering a critical window for preventive intervention. Our results provide novel insights into the fundamental mechanisms underlying QTV and its potential role in arrhythmia prediction.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.07.017\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.07.017","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

QT间期(QTV)的搏动变异性是一个公认的心脏健康指标,QTV (bbb50 ms)的增加通常与心律失常的高风险相关。然而,导致这一现象的潜在机制仍然知之甚少。最近,我们发现心脏不稳定是QTV的主要原因。早期后去极化(EADs)是发生在心脏动作电位(AP)平台期的异常电振荡,通常发生在膜电位变得不稳定时。在这项研究中,我们使用具有随机离子通道门控的兔心室肌细胞生理细节计算模型来研究QTV与EAD倾向之间的关系。我们发现,即使在没有明显的EADs的情况下,由于内在的动力学不稳定性,AP持续时间(APD)变异性(作为单细胞水平ECG上QTV的替代指标)也会增加。当细胞状态接近EAD产生的阈值时,膜电压的小扰动被放大,导致APD变异性增加。电压钙通道失活空间的相平面分析表明,靠近产生EAD的吸引力盆地强烈影响复极化变异性,建立了QTV与EAD倾向之间的机制联系。此外,我们观察到QTV在较长的起搏周期长度(pcl)时增加,这与交替相关的APD变异性不同,后者在较短的pcl时增加。这些发现表明,QTV升高可能是EADs出现之前心律失常风险的早期指标,可能为预防性干预提供关键窗口。我们的研究结果为QTV的基本机制及其在心律失常预测中的潜在作用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Dynamical Instability in QT Interval Variability and Early Afterdepolarization Propensity.

Beat-to-beat variability of the QT interval (QTV) is a well-established marker of cardiac health, with increased QTV (> 5 ms) often associated with a higher risk of arrhythmias. However, the underlying mechanisms contributing to this phenomenon remain poorly understood. Recently, we showed that cardiac instability is a major cause of QTV. Early afterdepolarizations (EADs) are abnormal electrical oscillations that occur during the plateau phase of the cardiac action potential (AP), often arising when the membrane potential becomes unstable. In this study, we use a physiologically detailed computational model of rabbit ventricular myocytes with stochastic ion channel gating to investigate the relationship between QTV and EAD propensity. We found that increased AP duration (APD) variability, which serves as a surrogate for QTV on the ECG at the single-cell level, can arise even in the absence of apparent EADs, driven by intrinsic dynamical instability. As the cellular state approaches the threshold for EAD generation, small perturbations in membrane voltage are amplified, leading to increased APD variability. The phase-plane analysis in the voltage-calcium channel inactivation space demonstrates that proximity to the EAD-generating basin of attraction strongly influences repolarization variability, establishing a mechanistic link between QTV and EAD propensity. Furthermore, we observed that QTV increases at longer pacing cycle lengths (PCLs), distinguishing it from alternans-associated APD variability, which increases at shorter PCLs. These findings suggest that increased QTV may serve as an early indicator of arrhythmic risk before the manifestation of EADs, potentially offering a critical window for preventive intervention. Our results provide novel insights into the fundamental mechanisms underlying QTV and its potential role in arrhythmia prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信