Andra Grigorescu, Anca-Lelia Riza, Ioana Streata, Mihai G Netea
{"title":"免疫老化中训练免疫代谢失调及饮食模式的影响。","authors":"Andra Grigorescu, Anca-Lelia Riza, Ioana Streata, Mihai G Netea","doi":"10.1152/ajpcell.00153.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Trained immunity (TRIM) is the process through which the innate immune system undergoes memory-like epigenetic and metabolic reprogramming following an earlier infectious challenge. Trained immunity can be induced, in a similar fashion to microbial structures, by various endogenous compounds: oxidized low-density lipoproteins, lipoprotein(a), glucose and uric acid, and monosodium urate. Lipids, glucose, and protein metabolic dysfunction have the potential to perpetuate a proinflammatory feedback loop through the induction of maladaptive trained immunity programs, as shown in cardiovascular diseases, diabetes, and hyperuricemia. Molecular mechanisms leading to TRIM are susceptible to homeostatic disruptions of advanced age, and maladaptive TRIM may be the link between immune aging and age-associated pathologies. The present review discusses the current knowledge on metabolic pathways in adaptive and maladaptive trained immunity and its deleterious consequences of inappropriate activation during aging. Finally, we discuss how several dietary patterns modulate immunometabolism and influence trained immunity in aging.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":"329 2","pages":"C456-C470"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic dysregulation of trained immunity in immune aging and the impact of dietary patterns.\",\"authors\":\"Andra Grigorescu, Anca-Lelia Riza, Ioana Streata, Mihai G Netea\",\"doi\":\"10.1152/ajpcell.00153.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trained immunity (TRIM) is the process through which the innate immune system undergoes memory-like epigenetic and metabolic reprogramming following an earlier infectious challenge. Trained immunity can be induced, in a similar fashion to microbial structures, by various endogenous compounds: oxidized low-density lipoproteins, lipoprotein(a), glucose and uric acid, and monosodium urate. Lipids, glucose, and protein metabolic dysfunction have the potential to perpetuate a proinflammatory feedback loop through the induction of maladaptive trained immunity programs, as shown in cardiovascular diseases, diabetes, and hyperuricemia. Molecular mechanisms leading to TRIM are susceptible to homeostatic disruptions of advanced age, and maladaptive TRIM may be the link between immune aging and age-associated pathologies. The present review discusses the current knowledge on metabolic pathways in adaptive and maladaptive trained immunity and its deleterious consequences of inappropriate activation during aging. Finally, we discuss how several dietary patterns modulate immunometabolism and influence trained immunity in aging.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\"329 2\",\"pages\":\"C456-C470\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00153.2025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00153.2025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Metabolic dysregulation of trained immunity in immune aging and the impact of dietary patterns.
Trained immunity (TRIM) is the process through which the innate immune system undergoes memory-like epigenetic and metabolic reprogramming following an earlier infectious challenge. Trained immunity can be induced, in a similar fashion to microbial structures, by various endogenous compounds: oxidized low-density lipoproteins, lipoprotein(a), glucose and uric acid, and monosodium urate. Lipids, glucose, and protein metabolic dysfunction have the potential to perpetuate a proinflammatory feedback loop through the induction of maladaptive trained immunity programs, as shown in cardiovascular diseases, diabetes, and hyperuricemia. Molecular mechanisms leading to TRIM are susceptible to homeostatic disruptions of advanced age, and maladaptive TRIM may be the link between immune aging and age-associated pathologies. The present review discusses the current knowledge on metabolic pathways in adaptive and maladaptive trained immunity and its deleterious consequences of inappropriate activation during aging. Finally, we discuss how several dietary patterns modulate immunometabolism and influence trained immunity in aging.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.