{"title":"双功能策略:在单批发酵过程中,副芽孢杆菌同时生产生物聚合物和铅的生物吸附。","authors":"Raghavendra Paduvari, Roopashri Arekal, Divyashree Mysore Somashekara","doi":"10.1007/s10532-025-10160-2","DOIUrl":null,"url":null,"abstract":"<p><p>The conventional physicochemical processes of lead removal from contaminated wastewater are cost-intensive and generate toxic secondary wastes. Therefore, employing bacteria capable of lead biosorption will serve as a green, sustainable, safe and inexpensive process for lead removal, and its integration with polyhydroxyalkanoate (PHA) production will generate revenue. To integrate these two processes, Bacillus paramycoides isolated from the lake water were analyzed for lead biosorption and PHA production in mineral salt media containing lead nitrate at different incubation times. The bacterium showed a high lead biosorption of about 423 mg/g of biomass at 72 h of incubation, which was earlier not reported. Bacillus paramycoides produced polyhydroxybutyrate by utilizing sucrose in the media. The lead ions enhanced the PHA production up to 35.7% CDW in bacterial cells by inducing oxidative stress, and the ability of PHA polymer to adsorb lead ions prevented further oxidative damage to the cells. This study is the first report on using an integrated process approach for lead biosorption and PHA production in bacteria.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 4","pages":"65"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-function strategy: simultaneous biopolymer production and lead biosorption by Bacillus paramycoides in single-batch fermentation process.\",\"authors\":\"Raghavendra Paduvari, Roopashri Arekal, Divyashree Mysore Somashekara\",\"doi\":\"10.1007/s10532-025-10160-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conventional physicochemical processes of lead removal from contaminated wastewater are cost-intensive and generate toxic secondary wastes. Therefore, employing bacteria capable of lead biosorption will serve as a green, sustainable, safe and inexpensive process for lead removal, and its integration with polyhydroxyalkanoate (PHA) production will generate revenue. To integrate these two processes, Bacillus paramycoides isolated from the lake water were analyzed for lead biosorption and PHA production in mineral salt media containing lead nitrate at different incubation times. The bacterium showed a high lead biosorption of about 423 mg/g of biomass at 72 h of incubation, which was earlier not reported. Bacillus paramycoides produced polyhydroxybutyrate by utilizing sucrose in the media. The lead ions enhanced the PHA production up to 35.7% CDW in bacterial cells by inducing oxidative stress, and the ability of PHA polymer to adsorb lead ions prevented further oxidative damage to the cells. This study is the first report on using an integrated process approach for lead biosorption and PHA production in bacteria.</p>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 4\",\"pages\":\"65\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10532-025-10160-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-025-10160-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Dual-function strategy: simultaneous biopolymer production and lead biosorption by Bacillus paramycoides in single-batch fermentation process.
The conventional physicochemical processes of lead removal from contaminated wastewater are cost-intensive and generate toxic secondary wastes. Therefore, employing bacteria capable of lead biosorption will serve as a green, sustainable, safe and inexpensive process for lead removal, and its integration with polyhydroxyalkanoate (PHA) production will generate revenue. To integrate these two processes, Bacillus paramycoides isolated from the lake water were analyzed for lead biosorption and PHA production in mineral salt media containing lead nitrate at different incubation times. The bacterium showed a high lead biosorption of about 423 mg/g of biomass at 72 h of incubation, which was earlier not reported. Bacillus paramycoides produced polyhydroxybutyrate by utilizing sucrose in the media. The lead ions enhanced the PHA production up to 35.7% CDW in bacterial cells by inducing oxidative stress, and the ability of PHA polymer to adsorb lead ions prevented further oxidative damage to the cells. This study is the first report on using an integrated process approach for lead biosorption and PHA production in bacteria.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.