超强负热膨胀复合合金。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junming Gou, Yun Pan, Xiaolian Liu, Chang Liu, Hualei Zhang, Die Liu, Xingge Xu, Chuanxin Liang, Xuefeng Zhang, Tianyu Ma
{"title":"超强负热膨胀复合合金。","authors":"Junming Gou,&nbsp;Yun Pan,&nbsp;Xiaolian Liu,&nbsp;Chang Liu,&nbsp;Hualei Zhang,&nbsp;Die Liu,&nbsp;Xingge Xu,&nbsp;Chuanxin Liang,&nbsp;Xuefeng Zhang,&nbsp;Tianyu Ma","doi":"10.1002/adma.202507767","DOIUrl":null,"url":null,"abstract":"<p>Negative thermal expansion (NTE) materials, which are crucial for fabricating strong metallic composites with temperature-invariant volumes, face significant challenges: they not only need to maintain a large thermal expansion over a wide temperature range but also need to harness strength and ductility for load-bearing applications. Unfortunately, most of these materials are brittle (compressive strength &lt; 1 GPa), while the few ductile materials available have a narrow temperature range and significant thermal hysteresis. Herein, a compositionally complex Fe–Co–Ni–Ti alloy is reported exhibiting an excellent combination of large NTE over a wide temperature range with narrow thermal hysteresis, high compressive strength, and modest ductility. This unusual set of properties stems from the unique microstructure of the alloy, in which the matrix phase enables a unique kinetically sluggish thermoelastic martensitic transformation with a pronounced volumetric change, while the mechanically hard secondary phases contribute to the strengthening effect. An ultrahigh strength of up to 2.64 GPa could be achieved by manipulating the nanoscale local chemical ordering, accompanied by tunable thermal expansion behavior. This study opens a new design strategy for high-performance functional materials.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 40","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrastrong Negative Thermal Expansion Compositionally Complex Alloy\",\"authors\":\"Junming Gou,&nbsp;Yun Pan,&nbsp;Xiaolian Liu,&nbsp;Chang Liu,&nbsp;Hualei Zhang,&nbsp;Die Liu,&nbsp;Xingge Xu,&nbsp;Chuanxin Liang,&nbsp;Xuefeng Zhang,&nbsp;Tianyu Ma\",\"doi\":\"10.1002/adma.202507767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Negative thermal expansion (NTE) materials, which are crucial for fabricating strong metallic composites with temperature-invariant volumes, face significant challenges: they not only need to maintain a large thermal expansion over a wide temperature range but also need to harness strength and ductility for load-bearing applications. Unfortunately, most of these materials are brittle (compressive strength &lt; 1 GPa), while the few ductile materials available have a narrow temperature range and significant thermal hysteresis. Herein, a compositionally complex Fe–Co–Ni–Ti alloy is reported exhibiting an excellent combination of large NTE over a wide temperature range with narrow thermal hysteresis, high compressive strength, and modest ductility. This unusual set of properties stems from the unique microstructure of the alloy, in which the matrix phase enables a unique kinetically sluggish thermoelastic martensitic transformation with a pronounced volumetric change, while the mechanically hard secondary phases contribute to the strengthening effect. An ultrahigh strength of up to 2.64 GPa could be achieved by manipulating the nanoscale local chemical ordering, accompanied by tunable thermal expansion behavior. This study opens a new design strategy for high-performance functional materials.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 40\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507767\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507767","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

负热膨胀(NTE)材料对于制造具有温度不变体积的强金属复合材料至关重要,但它们面临着重大挑战:它们不仅需要在很宽的温度范围内保持较大的热膨胀,还需要利用承载应用的强度和延展性。不幸的是,这些材料大多是脆性的(抗压强度< 1 GPa),而少数可用的延性材料具有狭窄的温度范围和明显的热滞后。本文报道了一种成分复杂的Fe-Co-Ni-Ti合金,在宽温度范围内具有大的NTE,窄的热滞后,高的抗压强度和适度的延展性。这种不寻常的性能源于合金独特的微观结构,其中基体相能够实现独特的动力学缓慢的热弹性马氏体转变,并伴有明显的体积变化,而机械坚硬的次级相则有助于强化效果。通过控制纳米尺度的局部化学有序,伴随着可调节的热膨胀行为,可以获得高达2.64 GPa的超高强度。本研究为高性能功能材料的设计开辟了一条新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrastrong Negative Thermal Expansion Compositionally Complex Alloy

Ultrastrong Negative Thermal Expansion Compositionally Complex Alloy

Negative thermal expansion (NTE) materials, which are crucial for fabricating strong metallic composites with temperature-invariant volumes, face significant challenges: they not only need to maintain a large thermal expansion over a wide temperature range but also need to harness strength and ductility for load-bearing applications. Unfortunately, most of these materials are brittle (compressive strength < 1 GPa), while the few ductile materials available have a narrow temperature range and significant thermal hysteresis. Herein, a compositionally complex Fe–Co–Ni–Ti alloy is reported exhibiting an excellent combination of large NTE over a wide temperature range with narrow thermal hysteresis, high compressive strength, and modest ductility. This unusual set of properties stems from the unique microstructure of the alloy, in which the matrix phase enables a unique kinetically sluggish thermoelastic martensitic transformation with a pronounced volumetric change, while the mechanically hard secondary phases contribute to the strengthening effect. An ultrahigh strength of up to 2.64 GPa could be achieved by manipulating the nanoscale local chemical ordering, accompanied by tunable thermal expansion behavior. This study opens a new design strategy for high-performance functional materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信