{"title":"高性能锌基电池的协同聚吡咯涂层和电解质工程。","authors":"Liu Jiang , Qi Wang , Daohong Zhang , Qiufan Wang","doi":"10.1039/d5cc03306c","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (ZIBs) are hindered by anode issues including dendrite growth, hydrogen evolution, and passivation. Herein, we propose use of a polypyrrole (PPy) combined with citric acid (CA) and sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) additives to regulate Zn<sup>2+</sup> reduction kinetics. The modified anode enables a symmetric cell to achieve stable cycling over 400 h (1 mA cm<sup>−2</sup>, 1 mA h cm<sup>−2</sup>) with low polarization voltage (45 mV). Furthermore, the assembled full cell with α-MnO<sub>2</sub> cathodes retains a capacity of 140 mA h g<sup>−1</sup> after 2000 cycles, demonstrating its practical viability.</div></div>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"61 67","pages":"Pages 12538-12541"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic polypyrrole coating and electrolyte engineering toward high-performance Zn-based batteries†\",\"authors\":\"Liu Jiang , Qi Wang , Daohong Zhang , Qiufan Wang\",\"doi\":\"10.1039/d5cc03306c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous zinc-ion batteries (ZIBs) are hindered by anode issues including dendrite growth, hydrogen evolution, and passivation. Herein, we propose use of a polypyrrole (PPy) combined with citric acid (CA) and sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) additives to regulate Zn<sup>2+</sup> reduction kinetics. The modified anode enables a symmetric cell to achieve stable cycling over 400 h (1 mA cm<sup>−2</sup>, 1 mA h cm<sup>−2</sup>) with low polarization voltage (45 mV). Furthermore, the assembled full cell with α-MnO<sub>2</sub> cathodes retains a capacity of 140 mA h g<sup>−1</sup> after 2000 cycles, demonstrating its practical viability.</div></div>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\"61 67\",\"pages\":\"Pages 12538-12541\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1359734525015903\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1359734525015903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
水锌离子电池(zib)受到阳极问题的阻碍,包括枝晶生长、析氢和钝化。在此,我们建议使用聚吡咯(PPy)与柠檬酸(CA)和硫酸钠(Na2SO4)添加剂组合来调节Zn2+还原动力学。改进的阳极使对称电池能够在低极化电压(45 mV)下实现400小时(1 mA cm-2, 1 mA h cm-2)的稳定循环。此外,α-MnO2阴极组装的完整电池在2000次循环后仍保持140 mA h g-1的容量,证明了其实际可行性。
Synergistic polypyrrole coating and electrolyte engineering toward high-performance Zn-based batteries†
Aqueous zinc-ion batteries (ZIBs) are hindered by anode issues including dendrite growth, hydrogen evolution, and passivation. Herein, we propose use of a polypyrrole (PPy) combined with citric acid (CA) and sodium sulfate (Na2SO4) additives to regulate Zn2+ reduction kinetics. The modified anode enables a symmetric cell to achieve stable cycling over 400 h (1 mA cm−2, 1 mA h cm−2) with low polarization voltage (45 mV). Furthermore, the assembled full cell with α-MnO2 cathodes retains a capacity of 140 mA h g−1 after 2000 cycles, demonstrating its practical viability.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.