Nur Mohammad Fahad, Selvarajah Thuseethan, Sheikh Izzal Azid, Sami Azam
{"title":"一种创新的无人机覆盖路径规划方法,以促进精准农业和救援行动","authors":"Nur Mohammad Fahad, Selvarajah Thuseethan, Sheikh Izzal Azid, Sami Azam","doi":"10.1155/int/4700518","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Unmanned aerial vehicles (UAVs) have been employed for a variety of inspection and monitoring tasks, including agricultural applications and search and rescue (SAR) in remote areas. However, traditional monitoring methods tend to focus on optimizing one aspect. This study aims to propose a complete framework by integrating advanced methods to provide a robust and accurate path coverage solution. The combination of edge detection and area decomposition with a pathfinding algorithm can improve the overall performance. An effective edge detection model is developed that simultaneously detects the boundary and segments the area of interest (AOI) from the aerial land images and provides precise area mapping of the area. An intuitive grid decomposition with grid-to-graph mapping improves the flexibility of the area decomposition and ensures maximal coverage and safe operation routes for the UAVs. Finally, a robust modified simulated annealing (MSA) algorithm is introduced to determine the shortest path coverage route. The performance of the proposed methodology is tested on aerial imagery. Area decomposition ensures that there are no gaps in the AOI during the coverage planning. The MSA algorithm obtains the minimum length cost, charge consumption cost, and minimum number of turns to cover the area. It is shown that the integration of these techniques enhances the performance of the coverage path planning (CPP). A comparison of the proposed approach with benchmark algorithms further demonstrates its effectiveness. This study contributes to creating a complete CPP application for UAVs, which may assist with precision agriculture as well as safe and secure rescue operations.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4700518","citationCount":"0","resultStr":"{\"title\":\"An Innovative Coverage Path Planning Approach for UAVs to Boost Precision Agriculture and Rescue Operations\",\"authors\":\"Nur Mohammad Fahad, Selvarajah Thuseethan, Sheikh Izzal Azid, Sami Azam\",\"doi\":\"10.1155/int/4700518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Unmanned aerial vehicles (UAVs) have been employed for a variety of inspection and monitoring tasks, including agricultural applications and search and rescue (SAR) in remote areas. However, traditional monitoring methods tend to focus on optimizing one aspect. This study aims to propose a complete framework by integrating advanced methods to provide a robust and accurate path coverage solution. The combination of edge detection and area decomposition with a pathfinding algorithm can improve the overall performance. An effective edge detection model is developed that simultaneously detects the boundary and segments the area of interest (AOI) from the aerial land images and provides precise area mapping of the area. An intuitive grid decomposition with grid-to-graph mapping improves the flexibility of the area decomposition and ensures maximal coverage and safe operation routes for the UAVs. Finally, a robust modified simulated annealing (MSA) algorithm is introduced to determine the shortest path coverage route. The performance of the proposed methodology is tested on aerial imagery. Area decomposition ensures that there are no gaps in the AOI during the coverage planning. The MSA algorithm obtains the minimum length cost, charge consumption cost, and minimum number of turns to cover the area. It is shown that the integration of these techniques enhances the performance of the coverage path planning (CPP). A comparison of the proposed approach with benchmark algorithms further demonstrates its effectiveness. This study contributes to creating a complete CPP application for UAVs, which may assist with precision agriculture as well as safe and secure rescue operations.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4700518\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/4700518\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4700518","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Innovative Coverage Path Planning Approach for UAVs to Boost Precision Agriculture and Rescue Operations
Unmanned aerial vehicles (UAVs) have been employed for a variety of inspection and monitoring tasks, including agricultural applications and search and rescue (SAR) in remote areas. However, traditional monitoring methods tend to focus on optimizing one aspect. This study aims to propose a complete framework by integrating advanced methods to provide a robust and accurate path coverage solution. The combination of edge detection and area decomposition with a pathfinding algorithm can improve the overall performance. An effective edge detection model is developed that simultaneously detects the boundary and segments the area of interest (AOI) from the aerial land images and provides precise area mapping of the area. An intuitive grid decomposition with grid-to-graph mapping improves the flexibility of the area decomposition and ensures maximal coverage and safe operation routes for the UAVs. Finally, a robust modified simulated annealing (MSA) algorithm is introduced to determine the shortest path coverage route. The performance of the proposed methodology is tested on aerial imagery. Area decomposition ensures that there are no gaps in the AOI during the coverage planning. The MSA algorithm obtains the minimum length cost, charge consumption cost, and minimum number of turns to cover the area. It is shown that the integration of these techniques enhances the performance of the coverage path planning (CPP). A comparison of the proposed approach with benchmark algorithms further demonstrates its effectiveness. This study contributes to creating a complete CPP application for UAVs, which may assist with precision agriculture as well as safe and secure rescue operations.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.