K. V. Vineetha, M. Siva Kumar, P. Durgaprasadarao, Satti Sudha Mohan Reddy, Kokku Aruna Kumari, Lokesh Raju Vysyaaraju, B. T. P. Madhav, Sk Hasane Ahammad, Mahmoud M. A. Eid, Ahmed Nabih Zaki Rashed
{"title":"在太赫兹频谱范围内满足高数据速率和超快速第六代无线通信需求的阳光形MIMO天线设计与分析","authors":"K. V. Vineetha, M. Siva Kumar, P. Durgaprasadarao, Satti Sudha Mohan Reddy, Kokku Aruna Kumari, Lokesh Raju Vysyaaraju, B. T. P. Madhav, Sk Hasane Ahammad, Mahmoud M. A. Eid, Ahmed Nabih Zaki Rashed","doi":"10.1002/dac.70196","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>THz antennas, which function at high speeds, frequencies, and data rates, were developed in response to the increased need for high-speed communication equipment. High data transfer is necessary for wireless communication in modern technologies. After 5G, the next generation of wireless technology is called 6G (sixth-generation wireless). Because 6G networks may run at greater frequencies than 5G networks, their capacity and latency will be significantly increased. Allowing communications with a latency of 1 μs is one of the objectives of the 6G internet. This paper introduces a compact and highly efficient sunshine-slotted MIMO antenna designed for 6G and wireless applications. The antenna features a sun-shaped patch and a partial ground layer to improve its overall performance. The proposed antenna operates across 3.6, 4.5, 5.2, and 6.2 THz, respectively, which are used for wireless communication systems. This work presents a MIMO antenna constructed with a low reflection coefficient value of −34, −38, −18, and −23 dB, with an insertion loss of less than −30 dB over the operational frequency. In addition to this, the antenna has a gain value of 8.5–9.2 dBi. The proposed MIMO antenna also has a minimum ECC value of < 0.01; similarly, across the operating frequency, the antenna has a DG value range of 10–11 dB respectively. The proposed antenna has dimensions of 33 × 33 × 100 μm<sup>3</sup> using graphene as a conducting layer and silicon as a substrate layer. The suggested antenna can be utilized for high-speed communications because of its high gain and operating frequency applicability.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 13","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Sunshine-Shaped MIMO Antenna for High Demand in Data Rates and Ultra-Fast Sixth-Generation Wireless Communications Through THz Spectrum Range\",\"authors\":\"K. V. Vineetha, M. Siva Kumar, P. Durgaprasadarao, Satti Sudha Mohan Reddy, Kokku Aruna Kumari, Lokesh Raju Vysyaaraju, B. T. P. Madhav, Sk Hasane Ahammad, Mahmoud M. A. Eid, Ahmed Nabih Zaki Rashed\",\"doi\":\"10.1002/dac.70196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>THz antennas, which function at high speeds, frequencies, and data rates, were developed in response to the increased need for high-speed communication equipment. High data transfer is necessary for wireless communication in modern technologies. After 5G, the next generation of wireless technology is called 6G (sixth-generation wireless). Because 6G networks may run at greater frequencies than 5G networks, their capacity and latency will be significantly increased. Allowing communications with a latency of 1 μs is one of the objectives of the 6G internet. This paper introduces a compact and highly efficient sunshine-slotted MIMO antenna designed for 6G and wireless applications. The antenna features a sun-shaped patch and a partial ground layer to improve its overall performance. The proposed antenna operates across 3.6, 4.5, 5.2, and 6.2 THz, respectively, which are used for wireless communication systems. This work presents a MIMO antenna constructed with a low reflection coefficient value of −34, −38, −18, and −23 dB, with an insertion loss of less than −30 dB over the operational frequency. In addition to this, the antenna has a gain value of 8.5–9.2 dBi. The proposed MIMO antenna also has a minimum ECC value of < 0.01; similarly, across the operating frequency, the antenna has a DG value range of 10–11 dB respectively. The proposed antenna has dimensions of 33 × 33 × 100 μm<sup>3</sup> using graphene as a conducting layer and silicon as a substrate layer. The suggested antenna can be utilized for high-speed communications because of its high gain and operating frequency applicability.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"38 13\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.70196\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Analysis of Sunshine-Shaped MIMO Antenna for High Demand in Data Rates and Ultra-Fast Sixth-Generation Wireless Communications Through THz Spectrum Range
THz antennas, which function at high speeds, frequencies, and data rates, were developed in response to the increased need for high-speed communication equipment. High data transfer is necessary for wireless communication in modern technologies. After 5G, the next generation of wireless technology is called 6G (sixth-generation wireless). Because 6G networks may run at greater frequencies than 5G networks, their capacity and latency will be significantly increased. Allowing communications with a latency of 1 μs is one of the objectives of the 6G internet. This paper introduces a compact and highly efficient sunshine-slotted MIMO antenna designed for 6G and wireless applications. The antenna features a sun-shaped patch and a partial ground layer to improve its overall performance. The proposed antenna operates across 3.6, 4.5, 5.2, and 6.2 THz, respectively, which are used for wireless communication systems. This work presents a MIMO antenna constructed with a low reflection coefficient value of −34, −38, −18, and −23 dB, with an insertion loss of less than −30 dB over the operational frequency. In addition to this, the antenna has a gain value of 8.5–9.2 dBi. The proposed MIMO antenna also has a minimum ECC value of < 0.01; similarly, across the operating frequency, the antenna has a DG value range of 10–11 dB respectively. The proposed antenna has dimensions of 33 × 33 × 100 μm3 using graphene as a conducting layer and silicon as a substrate layer. The suggested antenna can be utilized for high-speed communications because of its high gain and operating frequency applicability.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.