Bhargav Reddy Godala;Sankara Prasad Ramesh;Krishnam Tibrewala;Chrysanthos Pepi;Gino Chacon;Svilen Kanev;Gilles A. Pokam;Alberto Ros;Daniel A. Jiménez;Paul V. Gratz;David I. August
{"title":"纠正错误路径","authors":"Bhargav Reddy Godala;Sankara Prasad Ramesh;Krishnam Tibrewala;Chrysanthos Pepi;Gino Chacon;Svilen Kanev;Gilles A. Pokam;Alberto Ros;Daniel A. Jiménez;Paul V. Gratz;David I. August","doi":"10.1109/LCA.2025.3542809","DOIUrl":null,"url":null,"abstract":"Modern OOO CPUs have very deep pipelines with large branch misprediction recovery penalties. Speculatively executed instructions on the wrong path can significantly change cache state, depending on speculation levels. Architects often employ trace-driven simulation models in the design exploration stage, which sacrifice precision for speed. Trace-driven simulators are orders of magnitude faster than execution-driven models, reducing the often hundreds of thousands of simulation hours needed to explore new micro-architectural ideas. Despite the strong benefits of trace-driven simulation, it often fails to adequately model the consequences of wrong-path execution because obtaining such traces from real systems is nontrivial. Prior works exclusively consider either pollution or prefetching in the instruction stream/L1-I cache and often ignore the impact on the data stream. Here, we examine wrong path execution in simulation results and design a set of infrastructure for enabling wrong-path execution in a trace driven simulator. Our analysis shows the wrong path affects structures on both the instruction and data sides extensively, resulting in performance variations ranging from <inline-formula><tex-math>$-3.05$</tex-math></inline-formula>% to 20.9% versus ignoring wrong path. To benefit the research community and enhance the accuracy of simulators, we opened our traces and tracing utility in the hopes that industry can provide wrong-path traces generated by their internal simulators, enabling academic simulation without exposing industry IP.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"221-224"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correct Wrong Path\",\"authors\":\"Bhargav Reddy Godala;Sankara Prasad Ramesh;Krishnam Tibrewala;Chrysanthos Pepi;Gino Chacon;Svilen Kanev;Gilles A. Pokam;Alberto Ros;Daniel A. Jiménez;Paul V. Gratz;David I. August\",\"doi\":\"10.1109/LCA.2025.3542809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern OOO CPUs have very deep pipelines with large branch misprediction recovery penalties. Speculatively executed instructions on the wrong path can significantly change cache state, depending on speculation levels. Architects often employ trace-driven simulation models in the design exploration stage, which sacrifice precision for speed. Trace-driven simulators are orders of magnitude faster than execution-driven models, reducing the often hundreds of thousands of simulation hours needed to explore new micro-architectural ideas. Despite the strong benefits of trace-driven simulation, it often fails to adequately model the consequences of wrong-path execution because obtaining such traces from real systems is nontrivial. Prior works exclusively consider either pollution or prefetching in the instruction stream/L1-I cache and often ignore the impact on the data stream. Here, we examine wrong path execution in simulation results and design a set of infrastructure for enabling wrong-path execution in a trace driven simulator. Our analysis shows the wrong path affects structures on both the instruction and data sides extensively, resulting in performance variations ranging from <inline-formula><tex-math>$-3.05$</tex-math></inline-formula>% to 20.9% versus ignoring wrong path. To benefit the research community and enhance the accuracy of simulators, we opened our traces and tracing utility in the hopes that industry can provide wrong-path traces generated by their internal simulators, enabling academic simulation without exposing industry IP.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 2\",\"pages\":\"221-224\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095315/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11095315/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Modern OOO CPUs have very deep pipelines with large branch misprediction recovery penalties. Speculatively executed instructions on the wrong path can significantly change cache state, depending on speculation levels. Architects often employ trace-driven simulation models in the design exploration stage, which sacrifice precision for speed. Trace-driven simulators are orders of magnitude faster than execution-driven models, reducing the often hundreds of thousands of simulation hours needed to explore new micro-architectural ideas. Despite the strong benefits of trace-driven simulation, it often fails to adequately model the consequences of wrong-path execution because obtaining such traces from real systems is nontrivial. Prior works exclusively consider either pollution or prefetching in the instruction stream/L1-I cache and often ignore the impact on the data stream. Here, we examine wrong path execution in simulation results and design a set of infrastructure for enabling wrong-path execution in a trace driven simulator. Our analysis shows the wrong path affects structures on both the instruction and data sides extensively, resulting in performance variations ranging from $-3.05$% to 20.9% versus ignoring wrong path. To benefit the research community and enhance the accuracy of simulators, we opened our traces and tracing utility in the hopes that industry can provide wrong-path traces generated by their internal simulators, enabling academic simulation without exposing industry IP.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.