{"title":"真实硬件上的每行激活计数:揭开性能开销的神秘面纱","authors":"Jumin Kim;Seungmin Baek;Minbok Wi;Hwayong Nam;Michael Jaemin Kim;Sukhan Lee;Kyomin Sohn;Jung Ho Ahn","doi":"10.1109/LCA.2025.3587293","DOIUrl":null,"url":null,"abstract":"Per-Row Activation Counting (PRAC), a DRAM read disturbance mitigation method, modifies key DRAM timing parameters, reportedly causing significant performance overheads in simulator-based studies. However, given known discrepancies between simulators and real hardware, real-machine experiments are vital for accurate PRAC performance estimation. We present the first real-machine performance analysis of PRAC. After verifying timing modifications on the latest CPUs using microbenchmarks, our analysis shows that PRAC’s average and maximum overheads are just 1.06% and 3.28% for the SPEC CPU2017 workloads—up to 9.15× lower than simulator-based reports. Further, we show that the close page policy minimizes this overhead by effectively hiding the elongated DRAM row precharge operations due to PRAC from the critical path.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"217-220"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Per-Row Activation Counting on Real Hardware: Demystifying Performance Overheads\",\"authors\":\"Jumin Kim;Seungmin Baek;Minbok Wi;Hwayong Nam;Michael Jaemin Kim;Sukhan Lee;Kyomin Sohn;Jung Ho Ahn\",\"doi\":\"10.1109/LCA.2025.3587293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per-Row Activation Counting (PRAC), a DRAM read disturbance mitigation method, modifies key DRAM timing parameters, reportedly causing significant performance overheads in simulator-based studies. However, given known discrepancies between simulators and real hardware, real-machine experiments are vital for accurate PRAC performance estimation. We present the first real-machine performance analysis of PRAC. After verifying timing modifications on the latest CPUs using microbenchmarks, our analysis shows that PRAC’s average and maximum overheads are just 1.06% and 3.28% for the SPEC CPU2017 workloads—up to 9.15× lower than simulator-based reports. Further, we show that the close page policy minimizes this overhead by effectively hiding the elongated DRAM row precharge operations due to PRAC from the critical path.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 2\",\"pages\":\"217-220\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11074718/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11074718/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Per-Row Activation Counting on Real Hardware: Demystifying Performance Overheads
Per-Row Activation Counting (PRAC), a DRAM read disturbance mitigation method, modifies key DRAM timing parameters, reportedly causing significant performance overheads in simulator-based studies. However, given known discrepancies between simulators and real hardware, real-machine experiments are vital for accurate PRAC performance estimation. We present the first real-machine performance analysis of PRAC. After verifying timing modifications on the latest CPUs using microbenchmarks, our analysis shows that PRAC’s average and maximum overheads are just 1.06% and 3.28% for the SPEC CPU2017 workloads—up to 9.15× lower than simulator-based reports. Further, we show that the close page policy minimizes this overhead by effectively hiding the elongated DRAM row precharge operations due to PRAC from the critical path.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.