{"title":"周期扰动学习模型预测控制","authors":"Syed Hassan Ahmed;Tommaso Bonetti;Lorenzo Fagiano","doi":"10.1109/LCSYS.2025.3586633","DOIUrl":null,"url":null,"abstract":"A novel Model Predictive Control (MPC) framework called disturbance-learning MPC (DL-MPC) for constrained LTI systems subject to bounded disturbances is proposed. The primary objective is to improve the disturbance rejection performance of the tube-based MPC (tube-MPC) law, especially focusing on periodic disturbance signals. Based on convex optimization, the method uses real-time measurements to learn a model of the disturbance, to predict its future behavior. By including this model in the MPC, the latter can proactively counteract the disturbance, significantly improving closed-loop performance. The presented technique includes the disturbance model while preserving robust recursive feasibility and constraint satisfaction. The effectiveness of DL-MPC is demonstrated through simulation of a multivariable nonlinear system, a Continuous-flow Stirred Tank Reactor, subject to periodic disturbances. The results clearly show enhanced tracking accuracy compared to nominal MPC and tube-MPC methods.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1826-1831"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072396","citationCount":"0","resultStr":"{\"title\":\"Periodic Disturbance Learning Model Predictive Control\",\"authors\":\"Syed Hassan Ahmed;Tommaso Bonetti;Lorenzo Fagiano\",\"doi\":\"10.1109/LCSYS.2025.3586633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Model Predictive Control (MPC) framework called disturbance-learning MPC (DL-MPC) for constrained LTI systems subject to bounded disturbances is proposed. The primary objective is to improve the disturbance rejection performance of the tube-based MPC (tube-MPC) law, especially focusing on periodic disturbance signals. Based on convex optimization, the method uses real-time measurements to learn a model of the disturbance, to predict its future behavior. By including this model in the MPC, the latter can proactively counteract the disturbance, significantly improving closed-loop performance. The presented technique includes the disturbance model while preserving robust recursive feasibility and constraint satisfaction. The effectiveness of DL-MPC is demonstrated through simulation of a multivariable nonlinear system, a Continuous-flow Stirred Tank Reactor, subject to periodic disturbances. The results clearly show enhanced tracking accuracy compared to nominal MPC and tube-MPC methods.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1826-1831\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072396\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072396/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072396/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Periodic Disturbance Learning Model Predictive Control
A novel Model Predictive Control (MPC) framework called disturbance-learning MPC (DL-MPC) for constrained LTI systems subject to bounded disturbances is proposed. The primary objective is to improve the disturbance rejection performance of the tube-based MPC (tube-MPC) law, especially focusing on periodic disturbance signals. Based on convex optimization, the method uses real-time measurements to learn a model of the disturbance, to predict its future behavior. By including this model in the MPC, the latter can proactively counteract the disturbance, significantly improving closed-loop performance. The presented technique includes the disturbance model while preserving robust recursive feasibility and constraint satisfaction. The effectiveness of DL-MPC is demonstrated through simulation of a multivariable nonlinear system, a Continuous-flow Stirred Tank Reactor, subject to periodic disturbances. The results clearly show enhanced tracking accuracy compared to nominal MPC and tube-MPC methods.