在(k,g)-没有(g + 1)-循环的图上

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Leonard Chidiebere Eze , Robert Jajcay , Jorik Jooken
{"title":"在(k,g)-没有(g + 1)-循环的图上","authors":"Leonard Chidiebere Eze ,&nbsp;Robert Jajcay ,&nbsp;Jorik Jooken","doi":"10.1016/j.amc.2025.129645","DOIUrl":null,"url":null,"abstract":"<div><div>A <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graph is a <em>k</em>-regular graph of girth <em>g</em> which does not contain cycles of length <span><math><mi>g</mi><mo>+</mo><mn>1</mn></math></span>. Such graphs are known to exist for all parameter pairs <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>, and we focus on determining the orders <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span> of the smallest <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs. This problem can be viewed as a special case of the previously studied <em>Girth Pair Problem</em>, the problem of finding the order of a smallest <em>k</em>-regular graph in which the length of a smallest even length cycle and the length of a smallest odd length cycle are prescribed. When considering the case of an odd girth <em>g</em>, this problem also yields results towards the <em>Cage Problem</em>, the problem of finding the order of a smallest <em>k</em>-regular graph of girth <em>g</em>. We establish the monotonicity of the function <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span> with respect to increasing <em>g</em>, and present universal lower bounds for the values <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>. We propose an algorithm for generating all <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs on <em>n</em> vertices, use this algorithm to determine several of the smaller values <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>, and discuss various approaches to finding smallest <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs within several classes of highly symmetrical graphs.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129645"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On (k,g)-graphs without (g + 1)-cycles\",\"authors\":\"Leonard Chidiebere Eze ,&nbsp;Robert Jajcay ,&nbsp;Jorik Jooken\",\"doi\":\"10.1016/j.amc.2025.129645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graph is a <em>k</em>-regular graph of girth <em>g</em> which does not contain cycles of length <span><math><mi>g</mi><mo>+</mo><mn>1</mn></math></span>. Such graphs are known to exist for all parameter pairs <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>g</mi><mo>≥</mo><mn>3</mn></math></span>, and we focus on determining the orders <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span> of the smallest <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs. This problem can be viewed as a special case of the previously studied <em>Girth Pair Problem</em>, the problem of finding the order of a smallest <em>k</em>-regular graph in which the length of a smallest even length cycle and the length of a smallest odd length cycle are prescribed. When considering the case of an odd girth <em>g</em>, this problem also yields results towards the <em>Cage Problem</em>, the problem of finding the order of a smallest <em>k</em>-regular graph of girth <em>g</em>. We establish the monotonicity of the function <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span> with respect to increasing <em>g</em>, and present universal lower bounds for the values <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>. We propose an algorithm for generating all <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs on <em>n</em> vertices, use this algorithm to determine several of the smaller values <span><math><mi>n</mi><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>, and discuss various approaches to finding smallest <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>g</mi><mo>,</mo><munder><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow><mo>_</mo></munder><mo>)</mo></math></span>-graphs within several classes of highly symmetrical graphs.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129645\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003716\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003716","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

A (k,g,g+1_)-图是一个周长为g的k正则图,它不包含长度为g+1的环。已知对于所有参数对k≥3,g≥3,都存在这样的图,我们着重于确定最小(k,g,g+1_)-图的n(k,g,g+1_)阶数。这个问题可以看作是已知最小偶长环和最小奇长环长度的最小k正则图的阶数问题的一个特例。当考虑奇周长g的情况时,这个问题也得到了关于Cage问题的结果,即寻找周长g的最小k正则图的阶数的问题。我们建立了函数n(k,g,g+1_)关于g增加的单调性,并给出了值n(k,g,g+1_)的普遍下界。我们提出了在n个顶点上生成所有(k,g,g+1_)-图的算法,使用该算法确定若干较小的值n(k,g,g+1_),并讨论了在几类高度对称图中寻找最小(k,g,g+1_)-图的各种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On (k,g)-graphs without (g + 1)-cycles
A (k,g,g+1_)-graph is a k-regular graph of girth g which does not contain cycles of length g+1. Such graphs are known to exist for all parameter pairs k3,g3, and we focus on determining the orders n(k,g,g+1_) of the smallest (k,g,g+1_)-graphs. This problem can be viewed as a special case of the previously studied Girth Pair Problem, the problem of finding the order of a smallest k-regular graph in which the length of a smallest even length cycle and the length of a smallest odd length cycle are prescribed. When considering the case of an odd girth g, this problem also yields results towards the Cage Problem, the problem of finding the order of a smallest k-regular graph of girth g. We establish the monotonicity of the function n(k,g,g+1_) with respect to increasing g, and present universal lower bounds for the values n(k,g,g+1_). We propose an algorithm for generating all (k,g,g+1_)-graphs on n vertices, use this algorithm to determine several of the smaller values n(k,g,g+1_), and discuss various approaches to finding smallest (k,g,g+1_)-graphs within several classes of highly symmetrical graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信