Schur-Cohn矩阵和矩阵铅笔法在高维中立型时滞微分方程稳定性研究中的应用

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jian Ma , Yixue Ma , Qiuxia Fu
{"title":"Schur-Cohn矩阵和矩阵铅笔法在高维中立型时滞微分方程稳定性研究中的应用","authors":"Jian Ma ,&nbsp;Yixue Ma ,&nbsp;Qiuxia Fu","doi":"10.1016/j.amc.2025.129639","DOIUrl":null,"url":null,"abstract":"<div><div>This note will provide a novel method for figuring out when and where the generic high-dimensional neutral delay differential equations can keep stable. Using the Schur-Cohn matrices, matrix pencils, and generalized eigenvalues, all imaginary axis eigenvalues will be presented and the critical delays will be determined in a straightforward manner. Additionally, a simple MATLAB-based algorithm will be presented. The main contribution of this paper is that we provide a computational method for determining imaginary axis eigenvalues and minimal delay margin on general high-dimensional neutral delay differential equations with real coefficients.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129639"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of Schur-Cohn matrix and matrix pencil methods in studying the stability of high-dimensional neutral delay differential equations\",\"authors\":\"Jian Ma ,&nbsp;Yixue Ma ,&nbsp;Qiuxia Fu\",\"doi\":\"10.1016/j.amc.2025.129639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This note will provide a novel method for figuring out when and where the generic high-dimensional neutral delay differential equations can keep stable. Using the Schur-Cohn matrices, matrix pencils, and generalized eigenvalues, all imaginary axis eigenvalues will be presented and the critical delays will be determined in a straightforward manner. Additionally, a simple MATLAB-based algorithm will be presented. The main contribution of this paper is that we provide a computational method for determining imaginary axis eigenvalues and minimal delay margin on general high-dimensional neutral delay differential equations with real coefficients.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129639\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003650\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003650","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将为求解一般高维中立型时滞微分方程在何时何地保持稳定提供一种新的方法。利用Schur-Cohn矩阵、矩阵铅笔和广义特征值,将给出所有虚轴特征值,并以直接的方式确定临界延迟。此外,还将介绍一个简单的基于matlab的算法。本文的主要贡献是提供了一种确定一般高维实系数中立型时滞微分方程的虚轴特征值和最小时滞余量的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of Schur-Cohn matrix and matrix pencil methods in studying the stability of high-dimensional neutral delay differential equations
This note will provide a novel method for figuring out when and where the generic high-dimensional neutral delay differential equations can keep stable. Using the Schur-Cohn matrices, matrix pencils, and generalized eigenvalues, all imaginary axis eigenvalues will be presented and the critical delays will be determined in a straightforward manner. Additionally, a simple MATLAB-based algorithm will be presented. The main contribution of this paper is that we provide a computational method for determining imaginary axis eigenvalues and minimal delay margin on general high-dimensional neutral delay differential equations with real coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信