一个快速增广拉格朗日框架及其应用

IF 2.5 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Jing Chen , Lianyuan Cheng , Min Gan , Quanmin Zhu
{"title":"一个快速增广拉格朗日框架及其应用","authors":"Jing Chen ,&nbsp;Lianyuan Cheng ,&nbsp;Min Gan ,&nbsp;Quanmin Zhu","doi":"10.1016/j.sysconle.2025.106196","DOIUrl":null,"url":null,"abstract":"<div><div>This letter investigates a fast augmented Lagrangian framework applicable to constrained convex optimization problems. By integrating the Aitken acceleration technique and the multi-direction acceleration technique, this framework enhances the convergence rate of the traditional augmented Lagrangian method and adapts to different types of constrained convex optimization problems on a case-by-case basis: (1) for problems with analytical solutions, the Aitken method is more suitable; (2) for problems without analytical solutions, the multi-direction method serves as a viable alternative. Furthermore, the proposed fast augmented acceleration technique is extended to system identification and the Alternating Direction Method of Multipliers (ADMM). The effectiveness of the framework is validated through convergence analysis and numerical experiments.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"204 ","pages":"Article 106196"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast augmented Lagrangian framework and its application\",\"authors\":\"Jing Chen ,&nbsp;Lianyuan Cheng ,&nbsp;Min Gan ,&nbsp;Quanmin Zhu\",\"doi\":\"10.1016/j.sysconle.2025.106196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This letter investigates a fast augmented Lagrangian framework applicable to constrained convex optimization problems. By integrating the Aitken acceleration technique and the multi-direction acceleration technique, this framework enhances the convergence rate of the traditional augmented Lagrangian method and adapts to different types of constrained convex optimization problems on a case-by-case basis: (1) for problems with analytical solutions, the Aitken method is more suitable; (2) for problems without analytical solutions, the multi-direction method serves as a viable alternative. Furthermore, the proposed fast augmented acceleration technique is extended to system identification and the Alternating Direction Method of Multipliers (ADMM). The effectiveness of the framework is validated through convergence analysis and numerical experiments.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"204 \",\"pages\":\"Article 106196\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001781\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001781","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信研究了一个适用于约束凸优化问题的快速增广拉格朗日框架。该框架通过将Aitken加速技术与多向加速技术相结合,提高了传统增广拉格朗日方法的收敛速度,并对不同类型的约束凸优化问题进行了逐例适应:(1)对于解析解问题,Aitken方法更适用;(2)对于没有解析解的问题,多方向法是一种可行的替代方法。在此基础上,将快速增强加速度技术扩展到系统辨识和乘法器交替方向法(ADMM)中。通过收敛分析和数值实验验证了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast augmented Lagrangian framework and its application
This letter investigates a fast augmented Lagrangian framework applicable to constrained convex optimization problems. By integrating the Aitken acceleration technique and the multi-direction acceleration technique, this framework enhances the convergence rate of the traditional augmented Lagrangian method and adapts to different types of constrained convex optimization problems on a case-by-case basis: (1) for problems with analytical solutions, the Aitken method is more suitable; (2) for problems without analytical solutions, the multi-direction method serves as a viable alternative. Furthermore, the proposed fast augmented acceleration technique is extended to system identification and the Alternating Direction Method of Multipliers (ADMM). The effectiveness of the framework is validated through convergence analysis and numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信