Hani Boussenah , Abderrahim Bourouis , Abdullah A. AlZahrani , Abdeslam Omara , Samir Djimli
{"title":"金属泡沫聚氯乙烯集热器与建筑采暖通风室耦合的参数分析","authors":"Hani Boussenah , Abderrahim Bourouis , Abdullah A. AlZahrani , Abdeslam Omara , Samir Djimli","doi":"10.1016/j.ijheatfluidflow.2025.109985","DOIUrl":null,"url":null,"abstract":"<div><div>This study numerically investigates the thermal and dynamic integration between a hybrid photovoltaic-thermal (PVT) solar collector and a ventilated room for efficient renewable heating. To enhance heat transfer, a metal foam layer is embedded beneath the photovoltaic cells. Two distinct domains are considered in this study: laminar flow is assumed in the PVT air channel and simulated using an in-house FORTRAN code based on the finite volume method, while turbulent flow is assumed in the ventilated room and simulated using ANSYS Fluent with the standard k–ε turbulence model. A comprehensive parametric analysis is conducted to evaluate the influence of key parameters, including inlet air velocity, porous medium porosity, Darcy number, and the dimensionless porous layer thickness, on the overall system performance. The results indicate that increasing the porosity from 0.2 to 0.98 reduces electrical efficiency from 12.2 % to 9 %. However, the thermal efficiency shows gains of 67 %, 52 %, 45 %, and 35 % for inlet air velocities of 0.2, 0.3, 0.4, and 0.5 m/s, respectively. At high Darcy numbers (Da ≥ 10<sup>−3</sup>), increasing the porous layer thickness up to 0.8 enhances the system performance, leading to improvements of 47.8 %, 22 %, and 23 % in thermal efficiency, electrical efficiency, and average room temperature, respectively.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"116 ","pages":"Article 109985"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric analysis of a metal foam-based PVT collector coupled with a ventilated room for building heating\",\"authors\":\"Hani Boussenah , Abderrahim Bourouis , Abdullah A. AlZahrani , Abdeslam Omara , Samir Djimli\",\"doi\":\"10.1016/j.ijheatfluidflow.2025.109985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study numerically investigates the thermal and dynamic integration between a hybrid photovoltaic-thermal (PVT) solar collector and a ventilated room for efficient renewable heating. To enhance heat transfer, a metal foam layer is embedded beneath the photovoltaic cells. Two distinct domains are considered in this study: laminar flow is assumed in the PVT air channel and simulated using an in-house FORTRAN code based on the finite volume method, while turbulent flow is assumed in the ventilated room and simulated using ANSYS Fluent with the standard k–ε turbulence model. A comprehensive parametric analysis is conducted to evaluate the influence of key parameters, including inlet air velocity, porous medium porosity, Darcy number, and the dimensionless porous layer thickness, on the overall system performance. The results indicate that increasing the porosity from 0.2 to 0.98 reduces electrical efficiency from 12.2 % to 9 %. However, the thermal efficiency shows gains of 67 %, 52 %, 45 %, and 35 % for inlet air velocities of 0.2, 0.3, 0.4, and 0.5 m/s, respectively. At high Darcy numbers (Da ≥ 10<sup>−3</sup>), increasing the porous layer thickness up to 0.8 enhances the system performance, leading to improvements of 47.8 %, 22 %, and 23 % in thermal efficiency, electrical efficiency, and average room temperature, respectively.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"116 \",\"pages\":\"Article 109985\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X25002437\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25002437","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Parametric analysis of a metal foam-based PVT collector coupled with a ventilated room for building heating
This study numerically investigates the thermal and dynamic integration between a hybrid photovoltaic-thermal (PVT) solar collector and a ventilated room for efficient renewable heating. To enhance heat transfer, a metal foam layer is embedded beneath the photovoltaic cells. Two distinct domains are considered in this study: laminar flow is assumed in the PVT air channel and simulated using an in-house FORTRAN code based on the finite volume method, while turbulent flow is assumed in the ventilated room and simulated using ANSYS Fluent with the standard k–ε turbulence model. A comprehensive parametric analysis is conducted to evaluate the influence of key parameters, including inlet air velocity, porous medium porosity, Darcy number, and the dimensionless porous layer thickness, on the overall system performance. The results indicate that increasing the porosity from 0.2 to 0.98 reduces electrical efficiency from 12.2 % to 9 %. However, the thermal efficiency shows gains of 67 %, 52 %, 45 %, and 35 % for inlet air velocities of 0.2, 0.3, 0.4, and 0.5 m/s, respectively. At high Darcy numbers (Da ≥ 10−3), increasing the porous layer thickness up to 0.8 enhances the system performance, leading to improvements of 47.8 %, 22 %, and 23 % in thermal efficiency, electrical efficiency, and average room temperature, respectively.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.