Swarali K. Joshi , Trishala Desai , Kasturi A. Rokade , Omkar Y. Pawar , Omkar A. Patil , Akash V. Fulari , Sunil S. Nirmale , Rajanish K. Kamat , Chitra Gurnani , Sooman Lim , Tukaram D. Dongale
{"title":"Dopamine@Agarose-based器件中memo电容使能的易失性开关","authors":"Swarali K. Joshi , Trishala Desai , Kasturi A. Rokade , Omkar Y. Pawar , Omkar A. Patil , Akash V. Fulari , Sunil S. Nirmale , Rajanish K. Kamat , Chitra Gurnani , Sooman Lim , Tukaram D. Dongale","doi":"10.1016/j.orgel.2025.107305","DOIUrl":null,"url":null,"abstract":"<div><div>The development of biocompatible, environmentally friendly, and low-cost functional switching materials for memory and synaptic learning devices has gained importance in recent years. Dopamine is a naturally occurring biomaterial that has been used in various fields. In the present study, dopamine@agarose was used as a switching layer, sandwiched between Ag top and FTO bottom electrodes to form the Ag/dopamine@agarose/FTO device. The agarose was utilized due to its natural polymeric properties and its functionality as a binder. The switching layer was characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. The non-pinched hysteresis curve revealed the mem-capacitive behaviour of the device, which was corroborated using electrochemical and frequency-dependent capacitance-voltage studies. The charge-flux properties depicted the non-ideal memristor nature of the device. Furthermore, the cumulative probability and Weibull distribution were studied to understand the switching variability. The fabricated device demonstrates a stable multilevel volatile memory effect over 15000 cycles. The results assert that dopamine can be a potential candidate for developing sustainable volatile memory devices.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"145 ","pages":"Article 107305"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mem-capacitance enabled volatile switching in Dopamine@Agarose-based devices\",\"authors\":\"Swarali K. Joshi , Trishala Desai , Kasturi A. Rokade , Omkar Y. Pawar , Omkar A. Patil , Akash V. Fulari , Sunil S. Nirmale , Rajanish K. Kamat , Chitra Gurnani , Sooman Lim , Tukaram D. Dongale\",\"doi\":\"10.1016/j.orgel.2025.107305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of biocompatible, environmentally friendly, and low-cost functional switching materials for memory and synaptic learning devices has gained importance in recent years. Dopamine is a naturally occurring biomaterial that has been used in various fields. In the present study, dopamine@agarose was used as a switching layer, sandwiched between Ag top and FTO bottom electrodes to form the Ag/dopamine@agarose/FTO device. The agarose was utilized due to its natural polymeric properties and its functionality as a binder. The switching layer was characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. The non-pinched hysteresis curve revealed the mem-capacitive behaviour of the device, which was corroborated using electrochemical and frequency-dependent capacitance-voltage studies. The charge-flux properties depicted the non-ideal memristor nature of the device. Furthermore, the cumulative probability and Weibull distribution were studied to understand the switching variability. The fabricated device demonstrates a stable multilevel volatile memory effect over 15000 cycles. The results assert that dopamine can be a potential candidate for developing sustainable volatile memory devices.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"145 \",\"pages\":\"Article 107305\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119925001119\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925001119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mem-capacitance enabled volatile switching in Dopamine@Agarose-based devices
The development of biocompatible, environmentally friendly, and low-cost functional switching materials for memory and synaptic learning devices has gained importance in recent years. Dopamine is a naturally occurring biomaterial that has been used in various fields. In the present study, dopamine@agarose was used as a switching layer, sandwiched between Ag top and FTO bottom electrodes to form the Ag/dopamine@agarose/FTO device. The agarose was utilized due to its natural polymeric properties and its functionality as a binder. The switching layer was characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. The non-pinched hysteresis curve revealed the mem-capacitive behaviour of the device, which was corroborated using electrochemical and frequency-dependent capacitance-voltage studies. The charge-flux properties depicted the non-ideal memristor nature of the device. Furthermore, the cumulative probability and Weibull distribution were studied to understand the switching variability. The fabricated device demonstrates a stable multilevel volatile memory effect over 15000 cycles. The results assert that dopamine can be a potential candidate for developing sustainable volatile memory devices.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.