{"title":"收缩梯度ρ-爱因斯坦孤子的端点","authors":"V. Borges , H.A. Rosero-García , J.P. dos Santos","doi":"10.1016/j.jmaa.2025.129906","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that all ends of a gradient shrinking <em>ρ</em>-Einstein soliton are <em>φ</em>-non-parabolic, provided <em>ρ</em> is nonnegative and the soliton has bounded and nonnegative scalar curvature, where the weight <em>φ</em> is a negative multiple of the potential function. We also show these solitons are connected at infinity for <span><math><mi>ρ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, and assuming a suitable bound for the scalar curvature.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"553 2","pages":"Article 129906"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ends of shrinking gradient ρ-Einstein solitons\",\"authors\":\"V. Borges , H.A. Rosero-García , J.P. dos Santos\",\"doi\":\"10.1016/j.jmaa.2025.129906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that all ends of a gradient shrinking <em>ρ</em>-Einstein soliton are <em>φ</em>-non-parabolic, provided <em>ρ</em> is nonnegative and the soliton has bounded and nonnegative scalar curvature, where the weight <em>φ</em> is a negative multiple of the potential function. We also show these solitons are connected at infinity for <span><math><mi>ρ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, and assuming a suitable bound for the scalar curvature.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"553 2\",\"pages\":\"Article 129906\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25006870\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25006870","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that all ends of a gradient shrinking ρ-Einstein soliton are φ-non-parabolic, provided ρ is nonnegative and the soliton has bounded and nonnegative scalar curvature, where the weight φ is a negative multiple of the potential function. We also show these solitons are connected at infinity for , , and assuming a suitable bound for the scalar curvature.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.