加权图和换向子的缺陷

IF 0.8 2区 数学 Q2 MATHEMATICS
Harish Kishnani, Amit Kulshrestha
{"title":"加权图和换向子的缺陷","authors":"Harish Kishnani,&nbsp;Amit Kulshrestha","doi":"10.1016/j.jalgebra.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a commutative ring. In <span><span>[5]</span></span>, the authors introduced <em>R</em>-weighted graphs as a tool for studying commutators in groups and Lie algebras. These graphs are equivalent to a system of balance equations, and their consistent labelings correspond to solutions of this system of balance equations. In this article, we apply these ideas in the case when <em>R</em> is a field <em>F</em>. We focus on <em>F</em>-weighted graphs with four vertices and establish necessary and sufficient conditions for the existence of a consistent labeling on them. A notion of defects in weighted graphs is introduced for this purpose. We prove that defects in weighted graphs prevent Lie brackets from being surjective onto the derived Lie subalgebra. Similarly, these defects prevent certain elements in the commutator subgroup of a nilpotent group of class 2 from being a commutator. As an application of our techniques, we prove that for a Lie algebra <em>L</em> whose derived subalgebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most 3-dimensional, the Lie bracket is surjective onto <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We provide a counterexample when <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>4</mn></math></span>. We also characterize commutators among the elements of <em>L</em>' when <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><mi>L</mi><mo>/</mo><mi>Z</mi><mo>(</mo><mi>L</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 213-233"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defects in weighted graphs and commutators\",\"authors\":\"Harish Kishnani,&nbsp;Amit Kulshrestha\",\"doi\":\"10.1016/j.jalgebra.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a commutative ring. In <span><span>[5]</span></span>, the authors introduced <em>R</em>-weighted graphs as a tool for studying commutators in groups and Lie algebras. These graphs are equivalent to a system of balance equations, and their consistent labelings correspond to solutions of this system of balance equations. In this article, we apply these ideas in the case when <em>R</em> is a field <em>F</em>. We focus on <em>F</em>-weighted graphs with four vertices and establish necessary and sufficient conditions for the existence of a consistent labeling on them. A notion of defects in weighted graphs is introduced for this purpose. We prove that defects in weighted graphs prevent Lie brackets from being surjective onto the derived Lie subalgebra. Similarly, these defects prevent certain elements in the commutator subgroup of a nilpotent group of class 2 from being a commutator. As an application of our techniques, we prove that for a Lie algebra <em>L</em> whose derived subalgebra <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> is at most 3-dimensional, the Lie bracket is surjective onto <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. We provide a counterexample when <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo><mo>=</mo><mn>4</mn></math></span>. We also characterize commutators among the elements of <em>L</em>' when <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><mi>L</mi><mo>/</mo><mi>Z</mi><mo>(</mo><mi>L</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mn>4</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"684 \",\"pages\":\"Pages 213-233\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004181\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004181","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个可交换环。在b[5]中,作者引入了r加权图作为研究群和李代数中的交换子的工具。这些图等价于一个平衡方程组,它们的一致标记对应于这个平衡方程组的解。在本文中,我们将这些思想应用于R是域f的情况下。我们关注具有四个顶点的f加权图,并建立其上存在一致标记的充分必要条件。为此,引入了加权图中缺陷的概念。证明了加权图的缺陷使李括号不能满射到派生的李子代数上。类似地,这些缺陷阻止了2类幂零群的换向子群中的某些元素成为换向子。作为我们技术的一个应用,我们证明了对于其派生子代数L ‘最多为三维的李代数L,李括号是满射到L ’上的。当dim (L ')=4时,我们给出了一个反例。当dim (L/Z(L))≤4时,我们还描述了L'元素间的交换子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defects in weighted graphs and commutators
Let R be a commutative ring. In [5], the authors introduced R-weighted graphs as a tool for studying commutators in groups and Lie algebras. These graphs are equivalent to a system of balance equations, and their consistent labelings correspond to solutions of this system of balance equations. In this article, we apply these ideas in the case when R is a field F. We focus on F-weighted graphs with four vertices and establish necessary and sufficient conditions for the existence of a consistent labeling on them. A notion of defects in weighted graphs is introduced for this purpose. We prove that defects in weighted graphs prevent Lie brackets from being surjective onto the derived Lie subalgebra. Similarly, these defects prevent certain elements in the commutator subgroup of a nilpotent group of class 2 from being a commutator. As an application of our techniques, we prove that for a Lie algebra L whose derived subalgebra L is at most 3-dimensional, the Lie bracket is surjective onto L. We provide a counterexample when dim(L)=4. We also characterize commutators among the elements of L' when dim(L/Z(L))4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信