{"title":"基本仿射空间上的d模和大g模","authors":"Masatoshi Kitagawa","doi":"10.1016/j.jalgebra.2025.06.037","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider <span><math><mi>D</mi></math></span>-modules on the basic affine space <span><math><mi>G</mi><mo>/</mo><mi>U</mi></math></span> and their global sections for a semisimple complex algebraic group <em>G</em>. Our aim is to prepare basic results about large non-irreducible modules for the branching problem and harmonic analysis of reductive Lie groups. A main tool is a formula given by Bezrukavnikov–Braverman–Positselskii. The formula is about a product of functions and their Fourier transforms on <span><math><mi>G</mi><mo>/</mo><mi>U</mi></math></span> like Capelli's identity. Using the formula, we give a generalization of the Beilinson–Bernstein correspondence.</div><div>It is also shown that the global sections of holonomic <span><math><mi>D</mi></math></span>-modules are also holonomic using the formula. As a consequence, we give a large algebra action on the <span><math><mi>u</mi></math></span>-cohomologies <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>(</mo><mi>u</mi><mo>;</mo><mi>V</mi><mo>)</mo></math></span> of a <span><math><mi>g</mi></math></span>-module <em>V</em> when <em>V</em> is realized as a holonomic <span><math><mi>D</mi></math></span>-module. We consider affinity of the supports of the <span><math><mi>t</mi></math></span>-modules <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>(</mo><mi>u</mi><mo>;</mo><mi>V</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"684 ","pages":"Pages 176-212"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D-modules on the basic affine space and large g-modules\",\"authors\":\"Masatoshi Kitagawa\",\"doi\":\"10.1016/j.jalgebra.2025.06.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider <span><math><mi>D</mi></math></span>-modules on the basic affine space <span><math><mi>G</mi><mo>/</mo><mi>U</mi></math></span> and their global sections for a semisimple complex algebraic group <em>G</em>. Our aim is to prepare basic results about large non-irreducible modules for the branching problem and harmonic analysis of reductive Lie groups. A main tool is a formula given by Bezrukavnikov–Braverman–Positselskii. The formula is about a product of functions and their Fourier transforms on <span><math><mi>G</mi><mo>/</mo><mi>U</mi></math></span> like Capelli's identity. Using the formula, we give a generalization of the Beilinson–Bernstein correspondence.</div><div>It is also shown that the global sections of holonomic <span><math><mi>D</mi></math></span>-modules are also holonomic using the formula. As a consequence, we give a large algebra action on the <span><math><mi>u</mi></math></span>-cohomologies <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>(</mo><mi>u</mi><mo>;</mo><mi>V</mi><mo>)</mo></math></span> of a <span><math><mi>g</mi></math></span>-module <em>V</em> when <em>V</em> is realized as a holonomic <span><math><mi>D</mi></math></span>-module. We consider affinity of the supports of the <span><math><mi>t</mi></math></span>-modules <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>(</mo><mi>u</mi><mo>;</mo><mi>V</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"684 \",\"pages\":\"Pages 176-212\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
D-modules on the basic affine space and large g-modules
In this paper, we consider -modules on the basic affine space and their global sections for a semisimple complex algebraic group G. Our aim is to prepare basic results about large non-irreducible modules for the branching problem and harmonic analysis of reductive Lie groups. A main tool is a formula given by Bezrukavnikov–Braverman–Positselskii. The formula is about a product of functions and their Fourier transforms on like Capelli's identity. Using the formula, we give a generalization of the Beilinson–Bernstein correspondence.
It is also shown that the global sections of holonomic -modules are also holonomic using the formula. As a consequence, we give a large algebra action on the -cohomologies of a -module V when V is realized as a holonomic -module. We consider affinity of the supports of the -modules .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.