双纳米颗粒在锻造Al-4.5 wt% Cu合金中促进强度-延展性协同作用

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunfeng Hu , Mojia Li , Jiaheng Li , Ran Ni , Yahui Wu , Botao Yan , Lei Wang , Yingbo Zhang , Dongdi Yin , Ying Zeng , Hui Chen
{"title":"双纳米颗粒在锻造Al-4.5 wt% Cu合金中促进强度-延展性协同作用","authors":"Yunfeng Hu ,&nbsp;Mojia Li ,&nbsp;Jiaheng Li ,&nbsp;Ran Ni ,&nbsp;Yahui Wu ,&nbsp;Botao Yan ,&nbsp;Lei Wang ,&nbsp;Yingbo Zhang ,&nbsp;Dongdi Yin ,&nbsp;Ying Zeng ,&nbsp;Hui Chen","doi":"10.1016/j.msea.2025.148775","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes an innovative thermomechanical composite process combining semi-solid isothermal treatment (SSIT), double extrusion, and aging to achieve superior strength-ductility synergy in Al-4.5 wt% Cu alloy. The SSIT process effectively refines primary coarse Al<sub>2</sub>Cu phases into nanoscale eutectic structures with an interlamellar spacing of ∼58 nm. Subsequent double extrusion fragments and disperses these structures into nanoparticles. Coupled with the dynamic formation of <span><math><mrow><msup><mi>θ</mi><mo>′</mo></msup><mo>/</mo><msup><mi>θ</mi><mo>″</mo></msup></mrow></math></span> nanoprecipitates during aging, the alloy develops a dual nanoparticle strengthening system embedded within a bimodal grain architecture featuring alternating coarse/fine-grained zones. The processed alloy demonstrates remarkable mechanical properties with a tensile strength of 472 MPa, yield strength of 348 MPa, and elongation of 16.1 %. This work demonstrates that coupling dual nanoparticles with bimodal grain structures enables dual-phase dislocation pinning while alleviating local stress concentrations, providing a scalable strategy for engineering high-performance aluminum alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"943 ","pages":"Article 148775"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual nanoparticles in a wrought Al-4.5 wt% Cu alloy to promote strength-ductility synergy\",\"authors\":\"Yunfeng Hu ,&nbsp;Mojia Li ,&nbsp;Jiaheng Li ,&nbsp;Ran Ni ,&nbsp;Yahui Wu ,&nbsp;Botao Yan ,&nbsp;Lei Wang ,&nbsp;Yingbo Zhang ,&nbsp;Dongdi Yin ,&nbsp;Ying Zeng ,&nbsp;Hui Chen\",\"doi\":\"10.1016/j.msea.2025.148775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes an innovative thermomechanical composite process combining semi-solid isothermal treatment (SSIT), double extrusion, and aging to achieve superior strength-ductility synergy in Al-4.5 wt% Cu alloy. The SSIT process effectively refines primary coarse Al<sub>2</sub>Cu phases into nanoscale eutectic structures with an interlamellar spacing of ∼58 nm. Subsequent double extrusion fragments and disperses these structures into nanoparticles. Coupled with the dynamic formation of <span><math><mrow><msup><mi>θ</mi><mo>′</mo></msup><mo>/</mo><msup><mi>θ</mi><mo>″</mo></msup></mrow></math></span> nanoprecipitates during aging, the alloy develops a dual nanoparticle strengthening system embedded within a bimodal grain architecture featuring alternating coarse/fine-grained zones. The processed alloy demonstrates remarkable mechanical properties with a tensile strength of 472 MPa, yield strength of 348 MPa, and elongation of 16.1 %. This work demonstrates that coupling dual nanoparticles with bimodal grain structures enables dual-phase dislocation pinning while alleviating local stress concentrations, providing a scalable strategy for engineering high-performance aluminum alloys.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"943 \",\"pages\":\"Article 148775\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325009992\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325009992","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合半固态等温处理(SSIT)、双挤压和时效的创新热机械复合工艺,以实现Al-4.5 wt% Cu合金优异的强度-塑性协同。SSIT工艺有效地将初生粗Al2Cu相细化为层间间距为~ 58 nm的纳米级共晶结构。随后的双重挤压使这些结构破碎并分散成纳米颗粒。再加上时效过程中θ′/θ″纳米沉淀的动态形成,合金形成了嵌入在双峰晶粒结构中的双纳米颗粒强化系统,其特征是粗晶区和细晶区交替存在。该合金的抗拉强度为472 MPa,屈服强度为348 MPa,伸长率为16.1%,具有良好的力学性能。该研究表明,双纳米颗粒与双峰晶粒结构的耦合可以实现双相位错钉住,同时减轻局部应力集中,为高性能铝合金的工程设计提供了一种可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual nanoparticles in a wrought Al-4.5 wt% Cu alloy to promote strength-ductility synergy
This study proposes an innovative thermomechanical composite process combining semi-solid isothermal treatment (SSIT), double extrusion, and aging to achieve superior strength-ductility synergy in Al-4.5 wt% Cu alloy. The SSIT process effectively refines primary coarse Al2Cu phases into nanoscale eutectic structures with an interlamellar spacing of ∼58 nm. Subsequent double extrusion fragments and disperses these structures into nanoparticles. Coupled with the dynamic formation of θ/θ nanoprecipitates during aging, the alloy develops a dual nanoparticle strengthening system embedded within a bimodal grain architecture featuring alternating coarse/fine-grained zones. The processed alloy demonstrates remarkable mechanical properties with a tensile strength of 472 MPa, yield strength of 348 MPa, and elongation of 16.1 %. This work demonstrates that coupling dual nanoparticles with bimodal grain structures enables dual-phase dislocation pinning while alleviating local stress concentrations, providing a scalable strategy for engineering high-performance aluminum alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信