非均相电fenton双阴极协同作用:铜驱动H2O2活化处理高效渗滤液纳滤浓缩液

IF 6.7 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Xujie Lan , Xinrui Liu , Xia Qin , Honghyun Ren , Xingwei Tao , Cuicui Xu , Fanbin Zhang , Xiyang Li
{"title":"非均相电fenton双阴极协同作用:铜驱动H2O2活化处理高效渗滤液纳滤浓缩液","authors":"Xujie Lan ,&nbsp;Xinrui Liu ,&nbsp;Xia Qin ,&nbsp;Honghyun Ren ,&nbsp;Xingwei Tao ,&nbsp;Cuicui Xu ,&nbsp;Fanbin Zhang ,&nbsp;Xiyang Li","doi":"10.1016/j.jwpe.2025.108378","DOIUrl":null,"url":null,"abstract":"<div><div>The heterogeneous electro-Fenton (EF) process is a promising advanced-oxidation technology for treating recalcitrant landfill leachate nanofiltration concentrate (LNC), yet single-cathode or homogeneous EF systems remain limited by iron-sludge generation, narrow pH windows and sub-optimal coupling between H<sub>2</sub>O<sub>2</sub> production and activation. Here we engineer a dual-cathode heterogeneous EF (DEF) reactor that spatially decouples (i) high-rate in situ H<sub>2</sub>O<sub>2</sub> electrosynthesis on a carbon-black modified Ni-foam gas-diffusion cathode, from (ii) efficient copper-activated Fenton-like decomposition of H<sub>2</sub>O<sub>2</sub> on a Cu-coated Ni-foam cathode. The synergistic, reagent-free configuration operates from pH 3–7 without external Fe<sup>2+</sup> dosing and produces negligible metal sludge. Under the optimum current (0.718 A) and pH 3.5 determined by response-surface methodology, the DEF removed 72.74 % COD and 65.31 % TOC from real LNC within 120 min at an energy demand of 128 kWh/kg TOC—54 % lower than anodic oxidation—and maintained &gt;90 % activity after five reuse cycles with ∼0.715 mg/ Cu leaching. Electron paramagnetic resonance (EPR) spectroscopy verified ·OH and ·O<sub>2</sub><sup>−</sup> as the dominant oxidant, generated via a surface Cu<sup>0</sup>/Cu<sup>+</sup>/Cu<sup>2+</sup> redox cycle that accelerates H<sub>2</sub>O<sub>2</sub> decomposition. Compared with homogeneous EF and single-cathode heterogeneous EF benchmarks, the DEF offers comparable mineralization yet superior energy efficiency and zero-sludge operation, providing a scalable strategy for treating refractory industrial effluents.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"77 ","pages":"Article 108378"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-cathode synergy in heterogeneous electro-Fenton: Copper-driven H2O2 activation for efficient leachate nanofiltration concentrate treatment\",\"authors\":\"Xujie Lan ,&nbsp;Xinrui Liu ,&nbsp;Xia Qin ,&nbsp;Honghyun Ren ,&nbsp;Xingwei Tao ,&nbsp;Cuicui Xu ,&nbsp;Fanbin Zhang ,&nbsp;Xiyang Li\",\"doi\":\"10.1016/j.jwpe.2025.108378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The heterogeneous electro-Fenton (EF) process is a promising advanced-oxidation technology for treating recalcitrant landfill leachate nanofiltration concentrate (LNC), yet single-cathode or homogeneous EF systems remain limited by iron-sludge generation, narrow pH windows and sub-optimal coupling between H<sub>2</sub>O<sub>2</sub> production and activation. Here we engineer a dual-cathode heterogeneous EF (DEF) reactor that spatially decouples (i) high-rate in situ H<sub>2</sub>O<sub>2</sub> electrosynthesis on a carbon-black modified Ni-foam gas-diffusion cathode, from (ii) efficient copper-activated Fenton-like decomposition of H<sub>2</sub>O<sub>2</sub> on a Cu-coated Ni-foam cathode. The synergistic, reagent-free configuration operates from pH 3–7 without external Fe<sup>2+</sup> dosing and produces negligible metal sludge. Under the optimum current (0.718 A) and pH 3.5 determined by response-surface methodology, the DEF removed 72.74 % COD and 65.31 % TOC from real LNC within 120 min at an energy demand of 128 kWh/kg TOC—54 % lower than anodic oxidation—and maintained &gt;90 % activity after five reuse cycles with ∼0.715 mg/ Cu leaching. Electron paramagnetic resonance (EPR) spectroscopy verified ·OH and ·O<sub>2</sub><sup>−</sup> as the dominant oxidant, generated via a surface Cu<sup>0</sup>/Cu<sup>+</sup>/Cu<sup>2+</sup> redox cycle that accelerates H<sub>2</sub>O<sub>2</sub> decomposition. Compared with homogeneous EF and single-cathode heterogeneous EF benchmarks, the DEF offers comparable mineralization yet superior energy efficiency and zero-sludge operation, providing a scalable strategy for treating refractory industrial effluents.</div></div>\",\"PeriodicalId\":17528,\"journal\":{\"name\":\"Journal of water process engineering\",\"volume\":\"77 \",\"pages\":\"Article 108378\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water process engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214714425014503\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714425014503","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

非均相电fenton (EF)工艺是处理难处理垃圾渗滤液纳滤浓缩液(LNC)的一种很有前途的高级氧化技术,但单阴极或均相电fenton系统仍然受到铁污泥产生、狭窄的pH窗口以及H2O2产生和活化之间非最佳耦合的限制。在这里,我们设计了一个双阴极非均相EF (DEF)反应器,该反应器在空间上解耦了(i)在炭黑修饰的Ni-foam气体扩散阴极上的高速率原位H2O2电合成,(ii)在cu涂层的Ni-foam阴极上的高效铜活化Fenton-like H2O2分解。协同,无试剂配置在pH 3-7范围内工作,无需外部Fe2+剂量,产生可忽略不计的金属污泥。在响应面法确定的最佳电流(0.718 A)和pH 3.5下,DEF在120 min内以128 kWh/kg TOC(比阳极氧化低54%)的能量需求从实际LNC中去除72.74%的COD和65.31%的TOC,并在5次重复使用循环后以~ 0.715 mg/ Cu浸出率保持90%的活性。电子顺磁共振(EPR)谱证实·OH和·O2−是主要氧化剂,通过表面Cu0/Cu+/Cu2+氧化还原循环生成,加速H2O2分解。与均质电解液和单阴极非均质电解液相比,DEF具有相当的矿化度,同时具有卓越的能源效率和零污泥运行,为处理难处理工业废水提供了一种可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-cathode synergy in heterogeneous electro-Fenton: Copper-driven H2O2 activation for efficient leachate nanofiltration concentrate treatment

Dual-cathode synergy in heterogeneous electro-Fenton: Copper-driven H2O2 activation for efficient leachate nanofiltration concentrate treatment
The heterogeneous electro-Fenton (EF) process is a promising advanced-oxidation technology for treating recalcitrant landfill leachate nanofiltration concentrate (LNC), yet single-cathode or homogeneous EF systems remain limited by iron-sludge generation, narrow pH windows and sub-optimal coupling between H2O2 production and activation. Here we engineer a dual-cathode heterogeneous EF (DEF) reactor that spatially decouples (i) high-rate in situ H2O2 electrosynthesis on a carbon-black modified Ni-foam gas-diffusion cathode, from (ii) efficient copper-activated Fenton-like decomposition of H2O2 on a Cu-coated Ni-foam cathode. The synergistic, reagent-free configuration operates from pH 3–7 without external Fe2+ dosing and produces negligible metal sludge. Under the optimum current (0.718 A) and pH 3.5 determined by response-surface methodology, the DEF removed 72.74 % COD and 65.31 % TOC from real LNC within 120 min at an energy demand of 128 kWh/kg TOC—54 % lower than anodic oxidation—and maintained >90 % activity after five reuse cycles with ∼0.715 mg/ Cu leaching. Electron paramagnetic resonance (EPR) spectroscopy verified ·OH and ·O2 as the dominant oxidant, generated via a surface Cu0/Cu+/Cu2+ redox cycle that accelerates H2O2 decomposition. Compared with homogeneous EF and single-cathode heterogeneous EF benchmarks, the DEF offers comparable mineralization yet superior energy efficiency and zero-sludge operation, providing a scalable strategy for treating refractory industrial effluents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信