{"title":"剪切荷载作用于多层薄壳的渐近公式及其变形模式的分类","authors":"Xiwei Pan , Yichao Zhu","doi":"10.1016/j.ijengsci.2025.104348","DOIUrl":null,"url":null,"abstract":"<div><div>Shell structures are generally modeled based on kinematic hypotheses, where some of the parameters are preferentially evaluated in a phenomenological manner. In this article, asymptotic analysis against the underlying three-dimensional equation system is considered so as to provide a rational framework for modeling and interpreting the deformation behavior of multi-layered thin shells (MTSs). Capable of accurately predicting both overall stiffness and detailed stress distribution, the proposed shell theory shows its distinguishing features at least in the following aspects. Firstly, it naturally introduces a rule for classifying the deformation modes of MTSs based on the magnitude of the maximum dimensionless principal curvature. Secondly, for each class, the hierarchy in the order of the involved field quantities is examined, and it is shown that when the product of the maximum principal curvature and the characteristic shell size reaches the magnitude of unity or larger, the resulting shell theory cannot be treated by natural extension of plate theories. Lastly, it is demonstrated that, for moderate shear forces and comparable material properties, a leading-order multi-layered shell theory derived from asymptotic analysis should suffice to output satisfactory predictions over the shell stiffness, as well as its internal stress distribution. Numerical examples of the deformation and strength analysis for MTSs are also presented to show the reliability of the leading-order model.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"216 ","pages":"Article 104348"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic formulation of the role of shear loads on multi-layered thin shells and classification of their deformation modes\",\"authors\":\"Xiwei Pan , Yichao Zhu\",\"doi\":\"10.1016/j.ijengsci.2025.104348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shell structures are generally modeled based on kinematic hypotheses, where some of the parameters are preferentially evaluated in a phenomenological manner. In this article, asymptotic analysis against the underlying three-dimensional equation system is considered so as to provide a rational framework for modeling and interpreting the deformation behavior of multi-layered thin shells (MTSs). Capable of accurately predicting both overall stiffness and detailed stress distribution, the proposed shell theory shows its distinguishing features at least in the following aspects. Firstly, it naturally introduces a rule for classifying the deformation modes of MTSs based on the magnitude of the maximum dimensionless principal curvature. Secondly, for each class, the hierarchy in the order of the involved field quantities is examined, and it is shown that when the product of the maximum principal curvature and the characteristic shell size reaches the magnitude of unity or larger, the resulting shell theory cannot be treated by natural extension of plate theories. Lastly, it is demonstrated that, for moderate shear forces and comparable material properties, a leading-order multi-layered shell theory derived from asymptotic analysis should suffice to output satisfactory predictions over the shell stiffness, as well as its internal stress distribution. Numerical examples of the deformation and strength analysis for MTSs are also presented to show the reliability of the leading-order model.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"216 \",\"pages\":\"Article 104348\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722525001351\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525001351","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymptotic formulation of the role of shear loads on multi-layered thin shells and classification of their deformation modes
Shell structures are generally modeled based on kinematic hypotheses, where some of the parameters are preferentially evaluated in a phenomenological manner. In this article, asymptotic analysis against the underlying three-dimensional equation system is considered so as to provide a rational framework for modeling and interpreting the deformation behavior of multi-layered thin shells (MTSs). Capable of accurately predicting both overall stiffness and detailed stress distribution, the proposed shell theory shows its distinguishing features at least in the following aspects. Firstly, it naturally introduces a rule for classifying the deformation modes of MTSs based on the magnitude of the maximum dimensionless principal curvature. Secondly, for each class, the hierarchy in the order of the involved field quantities is examined, and it is shown that when the product of the maximum principal curvature and the characteristic shell size reaches the magnitude of unity or larger, the resulting shell theory cannot be treated by natural extension of plate theories. Lastly, it is demonstrated that, for moderate shear forces and comparable material properties, a leading-order multi-layered shell theory derived from asymptotic analysis should suffice to output satisfactory predictions over the shell stiffness, as well as its internal stress distribution. Numerical examples of the deformation and strength analysis for MTSs are also presented to show the reliability of the leading-order model.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.