{"title":"增强胶凝复合材料用耐碱亚麻基网的初步评价","authors":"Jaka Gašper Pečnik , Laetitia Marrot , Marica Mikuljan , Tania Langella , Matthew Schwarzkopf","doi":"10.1016/j.susmat.2025.e01541","DOIUrl":null,"url":null,"abstract":"<div><div>The production of textile-reinforced concrete (TRC) requires less materials and energy in comparison with conventional concrete reinforced with steel rebars, which draws some solutions towards the production of net zero concrete that the Cement and Concrete Industry sector should reach by 2050. To go one step further, this study investigates the development of flax based meshes as basic components for a reinforcement grid in cementitious materials. Flax strands and hybrid strands (combination of flax strands and glass or basalt rovings) were impregnated with an epoxy resin to form meshes. The physical and mechanical properties of the flax based meshes were assessed and the alkaline resistance of these reinforcing materials was evaluated to determine their durability in a cementitious matrix. At isoweight of reinforcement, the flax-based meshes demonstrated the best performance in terms of specific modulus and specific strength compared to the hybrid meshes. The hybrid meshes from the control batch displayed specific properties in the same range, whether they were constituted of AR-glass or basalt. However, the use of alkali-resistant glass rovings strongly mitigated the degradation of the mechanical properties of the hybrids meshes by making them less affected by the alkaline environment, among all the reinforcement meshes. In contrast, hybrid meshes with basalt experienced an extensive reduction in tensile strength and strain after exposure to alkaline environment, due to the corrosion of the basalt fibres. Pull-out tests revealed maximum bond strengths for the flax based meshes embedded in a high-performance concrete matrix.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01541"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary assessment of alkali-resistant flax based meshes for reinforcing cementitious composites\",\"authors\":\"Jaka Gašper Pečnik , Laetitia Marrot , Marica Mikuljan , Tania Langella , Matthew Schwarzkopf\",\"doi\":\"10.1016/j.susmat.2025.e01541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The production of textile-reinforced concrete (TRC) requires less materials and energy in comparison with conventional concrete reinforced with steel rebars, which draws some solutions towards the production of net zero concrete that the Cement and Concrete Industry sector should reach by 2050. To go one step further, this study investigates the development of flax based meshes as basic components for a reinforcement grid in cementitious materials. Flax strands and hybrid strands (combination of flax strands and glass or basalt rovings) were impregnated with an epoxy resin to form meshes. The physical and mechanical properties of the flax based meshes were assessed and the alkaline resistance of these reinforcing materials was evaluated to determine their durability in a cementitious matrix. At isoweight of reinforcement, the flax-based meshes demonstrated the best performance in terms of specific modulus and specific strength compared to the hybrid meshes. The hybrid meshes from the control batch displayed specific properties in the same range, whether they were constituted of AR-glass or basalt. However, the use of alkali-resistant glass rovings strongly mitigated the degradation of the mechanical properties of the hybrids meshes by making them less affected by the alkaline environment, among all the reinforcement meshes. In contrast, hybrid meshes with basalt experienced an extensive reduction in tensile strength and strain after exposure to alkaline environment, due to the corrosion of the basalt fibres. Pull-out tests revealed maximum bond strengths for the flax based meshes embedded in a high-performance concrete matrix.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01541\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725003094\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725003094","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Preliminary assessment of alkali-resistant flax based meshes for reinforcing cementitious composites
The production of textile-reinforced concrete (TRC) requires less materials and energy in comparison with conventional concrete reinforced with steel rebars, which draws some solutions towards the production of net zero concrete that the Cement and Concrete Industry sector should reach by 2050. To go one step further, this study investigates the development of flax based meshes as basic components for a reinforcement grid in cementitious materials. Flax strands and hybrid strands (combination of flax strands and glass or basalt rovings) were impregnated with an epoxy resin to form meshes. The physical and mechanical properties of the flax based meshes were assessed and the alkaline resistance of these reinforcing materials was evaluated to determine their durability in a cementitious matrix. At isoweight of reinforcement, the flax-based meshes demonstrated the best performance in terms of specific modulus and specific strength compared to the hybrid meshes. The hybrid meshes from the control batch displayed specific properties in the same range, whether they were constituted of AR-glass or basalt. However, the use of alkali-resistant glass rovings strongly mitigated the degradation of the mechanical properties of the hybrids meshes by making them less affected by the alkaline environment, among all the reinforcement meshes. In contrast, hybrid meshes with basalt experienced an extensive reduction in tensile strength and strain after exposure to alkaline environment, due to the corrosion of the basalt fibres. Pull-out tests revealed maximum bond strengths for the flax based meshes embedded in a high-performance concrete matrix.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.