{"title":"图中k-团的完全隔离","authors":"Yupei Cao, Xinhui An, Baoyindureng Wu","doi":"10.1016/j.disc.2025.114689","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> and any positive integer <em>k</em>, a set <span><math><mi>D</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called a total <em>k</em>-clique isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> contains no <em>k</em>-clique and <em>D</em> induces a subgraph with no vertex of degree 0. The total <em>k</em>-clique isolation number <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is the minimum cardinality of a total <em>k</em>-clique isolating set of <em>G</em>. Clearly, <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the total domination number of <em>G</em>, and <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> was investigated by Boyer, Goddard and Henning recently. In this paper, we prove that for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>+</mo><mn>2</mn></math></span>, if <em>G</em> is a connected graph of order <em>n</em>, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span>. The bound is sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114689"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total isolation of k-cliques in a graph\",\"authors\":\"Yupei Cao, Xinhui An, Baoyindureng Wu\",\"doi\":\"10.1016/j.disc.2025.114689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> and any positive integer <em>k</em>, a set <span><math><mi>D</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called a total <em>k</em>-clique isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> contains no <em>k</em>-clique and <em>D</em> induces a subgraph with no vertex of degree 0. The total <em>k</em>-clique isolation number <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is the minimum cardinality of a total <em>k</em>-clique isolating set of <em>G</em>. Clearly, <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is the total domination number of <em>G</em>, and <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span> was investigated by Boyer, Goddard and Henning recently. In this paper, we prove that for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mi>k</mi><mo>+</mo><mn>2</mn></math></span>, if <em>G</em> is a connected graph of order <em>n</em>, then <span><math><msub><mrow><mi>ι</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span>. The bound is sharp.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114689\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002973\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002973","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a graph and any positive integer k, a set is called a total k-clique isolating set of G if contains no k-clique and D induces a subgraph with no vertex of degree 0. The total k-clique isolation number is the minimum cardinality of a total k-clique isolating set of G. Clearly, is the total domination number of G, and was investigated by Boyer, Goddard and Henning recently. In this paper, we prove that for and , if G is a connected graph of order n, then . The bound is sharp.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.