{"title":"最小饱和图没有4周期和5周期","authors":"Yue Ma","doi":"10.1016/j.disc.2025.114690","DOIUrl":null,"url":null,"abstract":"<div><div>Given a family of graphs <span><math><mi>F</mi></math></span>, a graph <em>G</em> is said to be <span><math><mi>F</mi></math></span>-saturated if <em>G</em> does not contain a copy of <em>F</em> as a subgraph for any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span>, but the addition of any edge <span><math><mi>e</mi><mo>∉</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> creates at least one copy of some <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> within <em>G</em>. The minimum size of an <span><math><mi>F</mi></math></span>-saturated graph on <em>n</em> vertices is called the saturation number, denoted by <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> be the cycle of length <em>r</em>. In this paper, we study on <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> when <span><math><mi>F</mi></math></span> is a family of cycles. In particular, we determine that <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>5</mn><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> for any positive integer <em>n</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114690"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum saturated graphs without 4-cycles and 5-cycles\",\"authors\":\"Yue Ma\",\"doi\":\"10.1016/j.disc.2025.114690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a family of graphs <span><math><mi>F</mi></math></span>, a graph <em>G</em> is said to be <span><math><mi>F</mi></math></span>-saturated if <em>G</em> does not contain a copy of <em>F</em> as a subgraph for any <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span>, but the addition of any edge <span><math><mi>e</mi><mo>∉</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> creates at least one copy of some <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> within <em>G</em>. The minimum size of an <span><math><mi>F</mi></math></span>-saturated graph on <em>n</em> vertices is called the saturation number, denoted by <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>. Let <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> be the cycle of length <em>r</em>. In this paper, we study on <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> when <span><math><mi>F</mi></math></span> is a family of cycles. In particular, we determine that <span><math><mtext>sat</mtext><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>}</mo><mo>)</mo><mo>=</mo><mo>⌈</mo><mfrac><mrow><mn>5</mn><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></math></span> for any positive integer <em>n</em>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114690\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002985\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002985","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimum saturated graphs without 4-cycles and 5-cycles
Given a family of graphs , a graph G is said to be -saturated if G does not contain a copy of F as a subgraph for any , but the addition of any edge creates at least one copy of some within G. The minimum size of an -saturated graph on n vertices is called the saturation number, denoted by . Let be the cycle of length r. In this paper, we study on when is a family of cycles. In particular, we determine that for any positive integer n.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.