{"title":"基于隐高斯模型和清查数据的森林属性时空预测","authors":"Paul B. May , Andrew O. Finley","doi":"10.1016/j.spasta.2025.100917","DOIUrl":null,"url":null,"abstract":"<div><div>The USDA Forest Inventory and Analysis (FIA) program conducts a national forest inventory for the United States through a network of permanent field plots. FIA produces estimates of area averages and totals for plot-measured forest variables through design-based inference, assuming a fixed population and a probability sample of field plot locations. The fixed-population assumption and characteristics of the FIA sampling scheme make it difficult to estimate change in forest variables over time using design-based inference. We propose spatial–temporal models based on Gaussian processes as a flexible tool for forest inventory data, capable of inferring forest variables and change thereof over arbitrary spatial and temporal domains. It is shown to be beneficial for the covariance function governing the latent Gaussian process to account for variation at multiple scales, separating spatially local variation from ecosystem-scale variation. We demonstrate a model for forest biomass density, inferring 20 years of biomass change within two US National Forests.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100917"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial–temporal prediction of forest attributes using latent Gaussian models and inventory data\",\"authors\":\"Paul B. May , Andrew O. Finley\",\"doi\":\"10.1016/j.spasta.2025.100917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The USDA Forest Inventory and Analysis (FIA) program conducts a national forest inventory for the United States through a network of permanent field plots. FIA produces estimates of area averages and totals for plot-measured forest variables through design-based inference, assuming a fixed population and a probability sample of field plot locations. The fixed-population assumption and characteristics of the FIA sampling scheme make it difficult to estimate change in forest variables over time using design-based inference. We propose spatial–temporal models based on Gaussian processes as a flexible tool for forest inventory data, capable of inferring forest variables and change thereof over arbitrary spatial and temporal domains. It is shown to be beneficial for the covariance function governing the latent Gaussian process to account for variation at multiple scales, separating spatially local variation from ecosystem-scale variation. We demonstrate a model for forest biomass density, inferring 20 years of biomass change within two US National Forests.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"69 \",\"pages\":\"Article 100917\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675325000399\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000399","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Spatial–temporal prediction of forest attributes using latent Gaussian models and inventory data
The USDA Forest Inventory and Analysis (FIA) program conducts a national forest inventory for the United States through a network of permanent field plots. FIA produces estimates of area averages and totals for plot-measured forest variables through design-based inference, assuming a fixed population and a probability sample of field plot locations. The fixed-population assumption and characteristics of the FIA sampling scheme make it difficult to estimate change in forest variables over time using design-based inference. We propose spatial–temporal models based on Gaussian processes as a flexible tool for forest inventory data, capable of inferring forest variables and change thereof over arbitrary spatial and temporal domains. It is shown to be beneficial for the covariance function governing the latent Gaussian process to account for variation at multiple scales, separating spatially local variation from ecosystem-scale variation. We demonstrate a model for forest biomass density, inferring 20 years of biomass change within two US National Forests.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.